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Abstract

We introduce a novel approach for solving quantitative economic models: generative

economic modeling. Our method combines neural networks with conventional solu-

tion techniques. Specifically, we train neural networks on simplified versions of an

economic model to generate approximations of the full model’s dynamic behavior. By

relying on these less complex satellite models, we circumvent the curse of dimension-

ality and are able to employ well-established numerical methods. We demonstrate our

approach on models with nonlinear dynamics and heterogeneous agents. Finally, we

apply generative economic modeling to solve a high-dimensional HANK model with

financial frictions.
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1 Introduction

The advances in artificial intelligence provide substantial opportunities for quantitative

economics by shifting the production-possibility frontier of modeling. Deep learning has

emerged as a powerful tool for solving dynamic economic models that were previously

considered intractable. The curse of dimensionality - first articulated by Bellman (1957) -

typically limits the complexity of economic models to only a few state variables. However,

deep learning can help to tame this problem, as discussed in Fernández-Villaverde, Nuño

and Perla (2024). Unfortunately, successfully employing deep learning in practice often

necessitates meticulous and detailed adjustments tailored to the specific model at hand,

which makes it challenging to employ. In contrast, established conventional solution meth-

ods, though constrained by the curse of dimensionality, are already specifically designed

and optimized for particular types of economic models and feature well-understood emer-

gence properties. To combine the strengths of both artificial intelligence and conventional

solution methods, we propose a novel approach: generative economic modeling.

Our approach uses neural networks to approximate the full economic model. However,

instead of using the complete model as input for the training process, the neural network

learns from a collection of simplified models, which we refer to as “satellite models”. Each

satellite model includes only a subset of features and states, featuring only partially the

dynamics of the full model.1 By relying on these satellite models, we can solve these

simpler models with conventional methods without running in the curse of dimensionality.

We can then use the solved model to simulate it. The generated simulated data is used to

train the neural network to learn the dynamics of the model. While each satellite model

captures only some features of the underlying economic model, we ensure an overlap of

features in the satellite models. The neural network is then trained on this data to learn to

approximate the solution of a complete model that includes all features and states.

Our method belongs to the class of generative artificial intelligence because we employ

the neural network to generate results for the complete model that includes all features

and states, something we have not used for the training process. Generative artificial intel-

ligence has achieved significant success, especially in the context of large language models,

which are very large deep learning models. While this success also holds promise for our

approach, the generative performance of neural networks in our context of economic mod-

eling is less clear.

In this paper, we establish that we can use our method for quantitative economic mod-

1 Most researchers are used to working with a satellite version of the model, as computational requirements
often force them to limit the size of their model. Our approach formalizes how to use a set of satellite
models and apply deep learning techniques to work with a more complex version of the model.
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els that feature nonlinear dynamics or heterogeneous agents. We first focus on practical

demonstrations of our method to solve a variety of models with increasing complexity.

We benchmark our new methodology against analytical solutions or widely used alterna-

tive global solution methods. Our reference model is a real business cycle model, where

we work with three versions: i) a simplified version that can be solved analytically, ii) a

medium-sized version with state-dependent investment costs that result in distinct nonlin-

earities, and iii) a heterogeneous agents version with partially uninsurable income risk in

line with Krusell and Smith (1998). We construct for all these models overlapping satellite

models and then use simulated data to train our neural network. Thus, we can evaluate

how well our approach is designed to capture nonlinearities and how applicable it is to the

class of heterogeneous agent versions.

Our methodology provides a very good approximation in all three versions of the model.

When evaluated against the true model, our approach consistently yields low prediction er-

rors below one percent, highlighting its robustness and accuracy. Notably, the magnitude

of these errors is comparable to that of the neural network trained on data generated by

the full model. The similarity in performance suggests that the observed errors stem from

imperfections in neural network training itself, rather than from differences in the training

datasets. This holds for the aggregate dynamics in the analytical model, the heterogeneous

agent version as well as the nonlinear dynamics in the medium-sized model with piecewise

nonlinear capital adjustment costs, highlighting its flexibility. Importantly, the latter result

underscores the potential of our method for addressing models with higher-order non-

linearities, which typically require computationally intensive global solution techniques.

To summarize, our generative economic modeling approach effectively approximates the

dynamics of the reference model with sufficient precision. This finding underscores the

potential of our approach in efficiently learning and replicating complex model dynamics

from simplified model versions.

When solving the heterogeneous agent model, we leverage an additional advantage of

our methodology that further reduces the numerical burden. Heterogeneous agent models

with multiple aggregate shocks face a threefold curse of dimensionality. First, expanding

the state space significantly increases the computational complexity of solving the house-

hold problem. Second, incorporating additional shocks complicates the accurate computa-

tion of expected values. Third, introducing more states necessitates a more involved cal-

culation of the perceived laws of motion to forecast the future evolution of payoff-relevant

aggregate variables. Our methodology addresses these challenges by effectively reducing

the state space by only solving satellite models, enabling researchers to solve more intricate

models with greater efficiency. By accelerating the solution process for complicated models
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and enabling the analysis of yet unsolvable economic environments, our approach provides

a powerful tool for advancing research on nonlinear and high-dimensional macroeconomic

models, especially in the heterogeneous agent literature.

We apply generative economic modeling to solve a high-dimensional heterogeneous

agent New-Keynesian (HANK) model with portfolio choice over four assets. Solving such

a problem with either numerical approach is challenging since the size of the state space

of the household scales with the size of the asset grid of each additional asset included.2

We circumvent the curse of dimensionality by solving satellite models where households

only choose between two different assets, fixing the portfolio choice of the other assets.

We train the surrogate model on the simulated data from the set of satellite models and

approximate the dynamics of an economy with four assets.

Another important feature of our method is that we can cross-check its fit using metrics

such as the Euler equation errors. Such metrics evaluate how well the neural network can

approximate the results. Therefore, the fit of the method can be evaluated also when we

move away from the laboratory setting provided above. These metrics also help set up the

satellite models and specify the neural network. Instead of providing a clear handbook

or proof, our approach follows the data science literature. We evaluate which combina-

tion of satellite models and neural networks provides the best approximation and use this

specification for our problem at hand.

As initial motivation for our approach, we highlighted the potential fragility of deep

learning when used directly to solve the economic model. However, our approach does not

feature this problem because of a difference in the type of training data. The data to train

in our approach is not affected by the neural network training because it is precalculated

and comes from the conventional solution method. When deep learning is directly used to

solve economic equations, the inputs used depend on the model solution from the neural

network. Therefore, the inputs are endogenous (instead of exogenous) because they de-

pend on the neural network. This feedback complicates finding the solution substantially,

an issue that is absent in our generative economic modeling approach.

Literature Review Our paper belongs to the fast-growing literature that uses deep learn-

ing to solve dynamic economic models. The areas of application have been HANK mod-

els (Fernández-Villaverde et al., 2024; Kase, Melosi and Rottner, 2022), heterogeneous

agents (Azinovic, Gaegauf and Scheidegger, 2022; Fernández-Villaverde, Hurtado and

Nuno, 2023; Gorodnichenko et al., 2021; Han, Yang and E, 2021; Kahou et al., 2021;

2 To circumvent the curse of dimensionality Reiter (2009), Gornemann, Kuester and Nakajima (2016), Ahn
et al. (2017), Bayer and Luetticke (2020), Bayer, Born and Luetticke (2024) provide techniques for dimen-
sionality reduction. Even with these techniques, the problem remains numerically intractable.
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Maliar and Maliar, 2022; Maliar, Maliar and Winant, 2021), overlapping generations and

life-cycle (Azinovic and Zemlicka, 2024; Druedahl and Røpke, 2025; Pascal, 2024), finance

(Chen, Didisheim and Scheidegger, 2023; Duarte, Duarte and Silva, 2024; Duarte and Fon-

seca, 2024), labor markets and search (Adenbaum, Babalievsky and Jungerman, 2024;

Jungerman, 2024; Payne, Rebei and Yang, 2024), monetary policy (Chen et al., 2021;

Nuño, Renner and Scheidegger, 2024), climate change (Fernández-Villaverde, Gillingham

and Scheidegger, 2024; Friedl et al., 2023), and behavorial macroeconomics (Ashwin,

Beaudry and Ellison, 2025; Kahou et al., 2024). However, our approach to using neural

networks deviates strongly from these papers, as we are not interested in directly solving

the economic equations. More closely related to our work is the usage of neural networks

as surrogate models as in Kase, Melosi and Rottner (2022) and Chen, Didisheim and Schei-

degger (2023).3 Yet, these papers use the complete underlying model for the training,

thereby excluding the generative part. Finally, we also differ by following a hybrid ap-

proach that exploits the advantages of conventional solution methods and deep learning.

Generative economic modeling does not feature this limitation, but applies to portfolio

problems of different liquidity, as well.

Our methodology allows us to speak to the literature featuring portfolio choice in HANK

models. Prominent examples of quantitative HANK models with more than one asset are

Bayer et al. (2019), Auclert, Rognlie and Straub (2020), McKay and Wieland (2021), Kekre

and Lenel (2022), Bayer, Born and Luetticke (2022), Bhandari et al. (2023), and Bayer,

Born and Luetticke (2024). We extend the research-possibility frontier in this area with our

methodology by allowing researchers to go beyond two assets to solve models with even

four assets. One important exception is Auclert et al. (2024), who solve a HANK model with

potentially limitless assets. However, the authors only demonstrate their methodology to

solve models with portfolios of identical liquidity.

Our work also builds on the broader literature on conventional solution methods that

do not rely on deep learning. Given the vast array of contributions across different fields of

computational economics, providing a comprehensive review would be infeasible. Instead,

we refer to the influential books on numerical methods by Judd (1998), Miranda and Fack-

ler (2004) and Heer and Maussner (2024), which provide a great overview of the meth-

ods available. Our approach builds upon these traditional methods while leveraging deep

learning to enhance their capacity to handle higher levels of complexity. The combination

of the methods makes it possible to tackle problems that were previously computationally

intractable.

3 A surrogate model is an approximate model that mimics the behavior of a more complex model.
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2 Generative Economic Modeling

This section outlines our generative economic modeling approach, which is designed to

solve a large class of dynamic general equilibrium models.4

2.1 Underlying Dynamic General Equilibrium Model

The dynamics of a dynamic general equilibrium model can be expressed as a transition

equation:

St = f (St−1, νt|Θ) (1)

where the state vector St ∈ Rm describes the economy in period t. Note that such a

representation can contain heterogeneous agents or behavioral models. The economy is

also subject to exogenous shocks that follow a Markov process, which is captured by the

vector νt ∈ Rn. There is also a vector of structural parameters Θ ∈ Rd, which affects

the dynamics of the model. The function f(·) determines the mapping from the previous

period state variables St−1 and current period shocks νt to the current period state variables

St conditional on the structural parameters. To solve the transition equation, it is needed

to find the policy function (decision function) which maps the model state variables St to

a set of choices ψt.

This mapping is usually unknown and needs to be solved with numerical methods.

Luckily, there already exists a large set of solution methods - more general solution ap-

proaches, like value function iteration, policy function iteration, or the endogenous grid

point method, and very tailored solution methods, such as the Krusell-Smith approach for

heterogeneous agent economies with aggregate risk. In general, the idea is to find an equi-

librium function that maps the state variables to a set of control variables, ψt = ψ(St|Θ).

These policy functions satisfy a set of equations derived from the model.

F(ψt(·)) = 0 (2)

Once equipped with these policy functions, we can solve for the transition equation.

The advantage of our approach is that we do not attempt to innovate on this dimension,

and we leave the conventional solution steps unchanged as they have been tailored for

years or even decades for specific problems. However, such conventional global solution

methods face the curse of dimensionality. The exponential growth of the state space as

the number of states increases limits the complexity of the economic model that can be
4 We focus on dynamic Markov economic models, where agents solve a Markov decision problem, as e.g. in

Maliar, Maliar and Winant (2021) and Fernández-Villaverde, Nuño and Perla (2024).
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considered. For instance, solution methods that use full grid-based approaches require

Nm+n points per dimension, which results in exponential computing costs, as shown by the

order of the integration error O(Nm+n).5

2.2 Satellite Models of the Complete Model

The curse of dimensionality often forces the modeler to reduce the complexity of the stud-

ied model by limiting the number of state variables and shocks. In other words, a simplified

satellite model is derived from the underlying complete model. In practice, using a satel-

lite model instead of the most comprehensive model available is mostly the norm when

working with global solution methods.6 In that regard, economists are well-trained to use

satellite models, and it is likely the common approach.

We denote the variables in the satellite version with a ∼ and rewrite the transition

equation of the satellite model as:

S̃t = f̃
(
S̃t−1, ν̃t|Θ̃

)
(3)

where the dimension of the states S̃t ∈ Rm̃ and shocks ν̃t ∈ Rñ is smaller than in the full

model, that is (m̃ < m)∨ (ñ < n). Note that the set of structural parameters Θ̃ ∈ Rd̃ is then

also potentially smaller, that is d̃ ≤ d.

However, we can now specify not only one satellite model, but instead several satellite

models that capture different elements of the underlying model, that is S̃a
t , S̃b

t , S̃c
t , . . . , where

the superscript indicates the satellite model.

S̃i
t = f̃ i

(
S̃i
t−1, ν̃

i
t |Θ̃i

)
, for i = a, b, c, . . . (4)

All these satellite models together form a set f̄t:

f̄
(
S̃t−1, ν̃t|Θ̃

)
=
{
f̃a
(
S̃a
t−1, ν̃

a
t |Θ̃a

)
, f̃ b
(
S̃b
t−1, ν̃

b
t |Θ̃b

)
, f̃ c
(
S̃c
t−1, ν̃

c
t |Θ̃c

)
, . . .

}
(5)

Importantly, the numerical costs to extend the set increase linearly instead of exponentially

(conditional on keeping the same number of states and shocks for each satellite model).

The satellite models can be specified to be complete and overlapping. We define complete-

ness as each state St and shock νt is at least covered in one satellite model. Therefore,

5 Note that refinements to the solution method can lower the computational costs, e.g. adaptive sparse grids
(see Brumm and Scheidegger (2017)).

6 Models that are solved with perturbation methods are usually much larger than models solved with global
solution methods, however, there also exist limits on the size of the problems. In the HANK literature, the
size of the household problem is such a limiting factor.
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A B C Full

Figure 1 Illustration of Satellite Models

at least one satellite model captures one specific part of the underlying model. This re-

quirement ensures that the set of satellite models and the true model have the same states,

shocks, and parameters. We define overlapping as each state St and shock νt should be at

least covered in two different satellite models, so that the different subsets overlap.

Illustration of satellite models To illustrate the notion of a satellite model, consider an

economic model with a state vector S that is too complex to solve in full. Instead, we solve

satellite models, each based on a subset S̃. Figure 1 illustrates three satellite models, each

containing only a subset of the states from the full model. However, we solve satellite

models with overlap, such that each satellite model features two of the subsets of states.

For instance, satellite model A includes the blue and green subset of states, while others

incorporate different combinations. In total, we have three satellite models (A, B, and C),

capturing all possible subset combinations.7

2.3 Deep Learning Approach to Reconstruct the Full Model

The set of satellite models is a subset of the true underlying model, that is

f̄
(
S̃t−1, ν̃t|Θ̃

)
⊆ f (St−1, νt|Θ) (6)

The idea of this paper is to evaluate whether a rich specified set of satellite models is

sufficient to approximate the true underlying model. Although the set of satellite models is

complete and overlapping, the satellite models are only partial representations of the full

models. For this reason, we want to use deep learning to learn the underlying dynamics

of the full model from the set of satellite models, leveraging deep learning’s generative

7 Let nS and nS̃ denote the number of states in the full model and in the satellite model, respectively. The
number of required satellite models to achieve completeness and overlapping as defined above is deter-
mined by the binomial coefficient:

(
nS
nS̃

)
= nS!

nS̃!(nS−nS̃)!
.
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capacity. We approximate the transition equation of the satellite models using a surrogate
model in the form of a deep neural network f̄DNN such that

f̄DNN

(
S̃t−1, ν̃t|Θ̃

)
≈ f̄

(
S̃t−1, ν̃t|Θ̃

)
. (7)

We then check whether the surrogate model approximates the dynamics of the true model.

Hence, we test whether for the true states St, shocks νt and parameters Θ it holds that

f̄DNN (St−1, νt|Θ) ≈ f (St−1, νt|Θ) . (8)

Since training a neural network introduces errors in the approximation, besides checking

the approximation (8), we also check the relative performance of our surrogate model

trained on data from the satellite models compared to a surrogate model trained on the

true data generated from the true full model. Below, we illustrate the individual steps of

this analysis.

Analysis for the full model In the proof of concept, we solve the full versions of the

models using conventional solution methods and hence know the transition equation for

the underlying full model. To generate the true data, we draw a sequence of vectors of

shocks {νt}Nt=1. Given these shocks and an initial condition, we update the states St and

controls ψt period-by-period. This results in the following dataset:

D = {St, ψt, νt}Nt=1 (9)

We use this dataset for direct evaluation of the goodness of fit of our surrogate model.

Moreover, using the simulated dataset, we train a neural network to learn the mapping

from previous period state variables St and shocks νt to current period state variables St, in

other words the function f(·). In particular, we train the neural network to minimize the

error between its predicted values and simulated values, summarized as loss L. The neural

network minimizes its weights using the provided data

fDNN = argmin
W

L(W |D) (10)

Analysis for the satellite models In practice, due to the curse of dimensionality, it would

be too costly to solve the full model, so we resort to our satellite model approach. Figure

2 illustrates the individual steps graphically. First, we need to solve the individual satellite

models, ensuring completeness and overlap of the satellite models. The choice of solution
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1. Solve

A

B

C

2. Simulate

XA
t , νAt , . . .

XB
t , νBt , . . .

XC
t , νCt , . . .

3. Prepare Dataset

• Dataset D = {Di}i∈{A,B,C}
constructed by stacking
{Si

t, ν
i
t}Nt=0

• Sample k from D is a
pair xk and yk:
inputs xk = [X i

t , ν
i
t ]

targets yk = [Si
t+1]

4. Train Neural Network

...

...
ỹk

Loss: L(yk, ỹk) = 1
B

∑B
k=1 ∥ỹk − yk∥2

xk

yk

Figure 2 Flow chart of the generative economic modeling method

algorithm is left to the researcher, as our approach is compatible with any method that can

solve the dynamics of the model.8 Next, we simulate time series for each satellite model

separately. We then merge all simulations, creating a long data series in which only a

specific subset of states and shocks is active in different periods. The dataset that holds the

simulation for all satellite models is:

D̄ =

{{
S̃a
t , ψS

a
t , ν̃

a
t

}N

t=1
,
{
S̃b
t , ψS

b
t , ν̃

b
t

}N

t=1
,
{
S̃c
t , ψS

c
t , ν̃

c
t

}N

t=1
, . . .

}
(11)

Because our set of satellite models is complete, this training data covers all states and

shocks, that is St and νt. We also divide the collected dataset into a training and validation

sample.9

Finally, we train the neural network using the datasets from the satellite models by

minimizing the mean squared errors between the predicted values from the neural network

and the observed values from the satellite models:

f̄DNN = argmin
W̄

L(W̄ |D̄) (12)

By training the network on data from multiple satellite models, it learns the distinct trans-

mission mechanisms of individual shocks, effectively generating an economic model that

integrates the key features of the underlying data. This approach allows us to approximate

the full model’s dynamics by leveraging insights from its components.

8 While any solution method can be used, the methodology yields optimal performance when applied to
solution techniques that minimize approximation errors. The surrogate model’s accuracy depends on how
well the training data represents the true data generation process. In our applications later on, we employ
global solution techniques to solve the model as accurately as possible.

9 The simulated data for each satellite model is distributed between the training and validation sample to
ensure that both samples contain the same share of each satellite model.
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Validation For the proof of concept, we know the true model and can benchmark the

performance of our methodology against the true data-generating process. Hence, we can

check whether equation (8) holds approximately. When applying our methodology to a

model that is otherwise unsolvable, this option is not available. While we cannot provide

proof that a sufficiently rich set of satellite models approximates the true underlying model,

we can directly employ standard methods to check the approximation error. In particular,

we can use selected equilibrium conditions and calculate the associated Euler equation

errors. Hence, we can check whether

F(f̄DNN(St−1, νt|Θt)) ≈ 0. (13)

The equilibrium conditions can be taken directly from the conventional solution step for the

full model, which we never solve. However, we now use our mapping from the generative

neural network to assess the fit. Note that we can also evaluate expectations over variables

using methods such as Monte Carlo or Quadrature rules.

3 Proof of Concept

This section demonstrates generative economic modeling by applying our methodology to

a range of models and comparing the results against those obtained with traditional global

solution methods. We first describe the model environment, including its variations that

entail nonlinear dynamics and heterogeneous agents. Afterwards, we showcase our new

solution approach.

3.1 Model Environment: Variants of the Real Business Cycle Model

As a benchmark to evaluate our method, we choose three different versions of the real busi-

ness cycle (RBC) model with distortionary taxes to showcase our method: i) a simplified

version that can be solved analytically, ii) a medium-sized version with state-dependent in-

vestment costs that result in distinct nonlinearities, and iii) a heterogeneous agents version

with partially uninsurable income risk in line with Krusell and Smith (1998).

We use an extended stochastic RBC model composed of a firm sector, a household sector,

and a government sector to test the predictive power of our method. The firm sector com-

prises (i) final goods producers who bundle the intermediate goods, (ii) intermediate goods

producers who rent out labor services and capital from perfectly competitive markets but

face monopolistic competition in the goods market as they produce differentiated goods,

and (iii) producers of capital goods who turn final goods into capital subject to adjustment
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costs. The adjustment costs are state-dependent, which introduces a non-linearity in the

model. Prices remain flexible so monopolistic competition only has redistributive effects.

Households earn income from supplying labor nit and capital kit, and earn profits Πit

from owning the firm sector. Households spend their income for consumption cit and

capital investment kit+1. Households can be heterogeneous in capital holdings kit, in their

idiosyncratic income component hit, and in the allocation of profits Πit.

Finally, the government levies distortionary labor- and capital-income taxes with tax

rates τL and τK , besides a value-added tax on consumption τC . Raising taxes is purely

distortionary since the government returns the tax revenues to the household via lump-

sum transfers Tt.

Production sector: The production sector features final, intermediate, and capital

goods producers. Final goods producers bundle varieties j of differentiated intermediate

goods according to the Dixit-Stiglitz aggregator

Yt =

(∫
y

1
µt
jt dj

)µt

, (14)

with elasticity of substitution µt−1
µt

. We allow the markup µt to evolve stochastically as an

AR(1) in its log

lnµt = (1− ρµ)

(
lnµ−

σ2
µ

2

)
+ ρµ lnµt−1 + ϵµt with ϵµt ∼ N(0, σ2

µ). (15)

The shock ϵµt is normally distributed with mean zero and variance σ2
µ. Firms can adjust

prices in each period, hence markup shocks only redistribute between profits and the factor

incomes.10

Final goods producers purchase a variety of goods from a continuous range of intermedi-

ate producers indexed by j. Production of intermediate goods occurs according to constant

returns to scale Cobb-Douglas production technology which combines labor Njt and capital

services ujtKjt taking into account capital utilization ujt according to

Yjt = At (ujtKjt)
α (ZtNjt)

1−α, (16)

where α denotes the capital share in the Cobb-Douglas production function, At denotes

10 Each differentiated good is offered at price pjt, the aggregate price level is Pt =

(∫
p

1
1−µt
jt dj

)1−µt

and

demand for each of the varieties is yjt =
(

pjt

Pt

) 1−µt
µt

Yt. In a symmetric equilibrium, this boils down to
pjt = Pt ∀j and yjt = Yt ∀j and we do not need to keep track of prices hereafter.
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aggregate productivity and Zt denotes labor-augmenting technology. Firms can choose the

intensity with which they use their capital stock Kjt by adjusting the capacity utilization

ujt. An intensity higher than normal results in increased depreciation of capital according

to δ(ujt) = δ0t + δ1(ujt − 1) + δ2/2(ujt − 1)2, which is an increasing an convex function of

utilization if δ1, δ2 > 0.

The producer minimizes costs, wtNjt − [rt + qtδ(ujt)]Kjt, where rt and qt are the rental

rate and the (producer) price of capital goods and wt is the real wage. Factor markets

are perfectly competitive and all intermediate goods producers are symmetric. Therefore,

we drop all indices j and only refer to the aggregate variables. We can characterize the

first-order conditions for labor and effective capital as

rt + qtδ(ut) =
α

µt

Atut

(
utKt

ZtNt

)α−1

=
α

µt

Yt
Kt

, (17)

and wt =
1− α

µt

AtZt

(
utKt

ZtNt

)α

=
1− α

µt

Yt
Nt

. (18)

The optimal utilization choice is given by

qt [δ1 + δ2(ut − 1)] =
α

µt

AtKt

(
utKt

ZtNt

)α−1

=
α

µt

Yt
ut
. (19)

As a result, aggregate profits are Πt = µtYt. The logarithm of productivities At and Zt

evolve stochastically according to AR(1) processes

lnAt = (1− ρA)

(
lnA− σ2

A

2

)
+ ρA lnAt−1 + ϵAt with ϵAt ∼ N(0, σ2

A), (20)

and lnZt = (1− ρZ)

(
lnZ − σ2

Z

2

)
+ ρZ lnZt−1 + ϵZt with ϵZt ∼ N(0, σ2

Z). (21)

ρi and σ2
i with i ∈ {A,Z} denote the autocorrelation of the log-technology shocks and the

variance of their normally distributed innovations, while A and Z denote the unconditional

means of the stochastic processes. Moreover, we allow time-varying depreciation rates δ0t,

which evolves according to

δ0t = δ0 + ϵδt with ϵδt ∼ N(0, σ2
δ ). (22)

Finally, capital goods producers take the relative price of capital goods, qt, as given when

determining their output. They face capital adjustment costs as in Hayashi (1982) and
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maximize

max
{It}∞t=0

E0

∞∑
t=0

Λ0,t

{
qt

[
It −

ϕt

κ

(
It
Kt

− δ0t

)κ

Kt

]
− It

}
. (23)

where κ > 1. To enhence the complexity of the mode, the adjustment costs feature a non-

linear element. In particular, ϕt is state-dependent and depends on the level of aggregate

capital:

ϕt =

ϕ if Kt > K

ϕ if Kt ≥ K
(24)

where K ≥ K ≥ 0. Note that capital good producers take the adjustment costs as given as

they depend on aggregate capital.

Optimization yields the optimality condition

qt =

[
1− ϕt

(
It
Kt

− δ0t

)κ−1
]−1

. (25)

Each capital goods producer will adjust its production, until (25) is satisfied. Since all

capital goods producers are symmetric, we obtain a law of motion for aggregate capital

Kt+1 = (1− δ(ut))Kt + It −
ϕt

κ

(
It
Kt

− δ

)κ

Kt. (26)

Having specified the production sector, we now describe the households in the economy.

Household sector: There exists a unit continuum of (potentially heterogeneous) house-

holds indexed by i ∈ [0, 1] which maximize their lifetime utility discounted by the factor β.

The households obtain utility from consumption cit and disutility from supplying labor nit.

To smooth consumption, households accumulate capital kit+1. The household’s objective

function is

Uit = max
cit,nit,kit+1

Et

∞∑
t=0

βtζtu(cit, nit), (27)

with Et denoting the expectation operator over all stochastic processes given the informa-

tion set as of time t and u(cit, nit) denotes the per period felicity function of the household

over consumption cit and labor nit. ζt is a stochastic aggregate shock to the discount factor

in period t. The logarithm of the discount factor shock ζt evolves stochastically according
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to an AR(1) process

ln ζt = −(1− ρζ)
σ2
ζ

2
+ ρζ ln ζt−1 + ϵζt with ϵζt ∼ N(0, σ2

ζ ). (28)

ρζ denotes the autocorrelation of the logarithmic discount factor shock, and the shock ϵζt is

normally distributed with mean zero and variance σ2
ζ . Households optimize the objective

function (27) subject to the budget constraint

(1 + τC)cit + qtkit+1 =
(
qt + (1− τK)rt

)
kit + (1− τL)wthitnit + Tt +Πit. (29)

rt and wt denote the interest rate and wage rate as specified above and hit denotes house-

holds’ idiosyncratic income component. τC , τK , and τL denote the value-added-tax, the

capital income tax, and the labor income tax, while Tt denotes the transfers the households

obtain from the government. Πit denotes the individual part in aggregate profits. In all

applications, households face a borrowing constraint, such that they are prohibited from

holding negative amounts of assets. Individual productivity hit evolves according to

log hit = −(1− ρh)
σ2
h

2
+ ρh log hit−1 + ϵhit with ϵhit ∼ N(0, σ2

h). (30)

with ϵhit as a normally distributed shock with variance σ2
ϵ and mean zero.

The solution of the household problem can be characterized by the Euler equation on

capital and the optimal labor supply schedule below

qtuC(cit, nit) = βEt

[
ζt+1

ζt

(
qt+1 + (1− τK)rt+1

)
uC(cit+1, nit+1)

]
(31)

−uL(cit, nit) = (1− τL)wthit
uC(cit, nit)

1 + τC
. (32)

uC(cit, nit) =
∂u
∂cit

(cit, nit) denotes the partial derivative of the felicity function with respect

to consumption and uL(cit, nit) = ∂u
∂nit

(cit, nit) denotes the partial derivative of the felicity

function with respect to labor.

Government sector: The government levies distortionary capital and labor income tax-

ation at flat rates τL and τK , and claims a value-added-tax τC on consumption. It uses the

tax revenues to finance lump-sum transfers Tt to the household. Therefore, the role of the

government is purely to redistribute between factor incomes and consumption and leisure.

The budget constraint is

Tt = τCCt + τKrtKt + τLwtNt. (33)
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Government transfers Tt adjust residually to make the government budget constraint hold.

Market clearing and equilibrium: The labor market, the capital market, and the goods

market have to clear at all periods. Labor and capital market clearing requires

Nt =

∫ 1

0

nitdi and Kt =

∫ 1

0

kitdi. (34)

Given these aggregate quantities, prices are determined by their marginal products on the

factor inputs as denoted in equations (17) and (18). The goods market clears when

Yt = Ct + It, (35)

where It = Kt+1 − (1− δ(ut))Kt +
ϕ
κ

(
It
Kt

− δ0

)κ
Kt denotes aggregate investment into next

periods capital stock net of adjustment costs and Ct =
∫ 1

0
citdi is aggregate consumption.

The goods market clears due to Walras-Law whenever the capital and the labor market

clear.

Dynamic equilibrium: We define a dynamic equilibrium in this economy as follows.

Firms and households take prices as given. Households behave optimally to maximize

their lifetime utility (27) subject to the associated budget constraint (29) and the stochastic

processes. Firms choose their factor inputs to maximize profits given their Cobb-Douglas

production technology until the optimality conditions (17), (18), and (19). Lump sum

taxes adjust such that the government budget constraint (33) holds, while the labor and

asset markets (34), and the goods market (35) clear.

3.2 Generative Economic Modeling

We are now using our generative economic modeling approach to solve the different vari-

ants of the real business cycle model. For each model version, we execute the following

steps: 1. Solve the set of satellite models, 2. simulate data from the satellite models, 3.

train a surrogate neural network on the set of simulated data from the satellite models, 4.

solve the true full model version, 5. simulate data from the true full model, 6. train a neu-

ral network on the simulated data from the true model, 7. evaluate the performance of the

surrogate model on the data simulated from the full model, 8. compare the approximation

of the true data generation process through the surrogate model with the neural network.
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3.2.1 Generative Economic Modeling with an Analytical Solution

To begin with, we illustrate our methodology using a stochastic representative agent ver-

sion of the model, which admits an analytical solution following the approach of Brock

and Mirman (1972). To solve the model analytically, we abstract from some features. The

following proposition summarizes the assumptions to obtain an analytical solution to the

model.

Proposition 1. If all households are ex-ante and ex-post identical, depreciation is deterministic
and full, δ(ut) = 1, capacity utilization is fixed at ut = 1, there are no capital adjustment costs
ϕ = 0, the discount factor shock is inactive σ2

ζ = 0, and per period felicity is of King, Plosser

and Rebelo (1988) (KPR)-form given by u(Ct, Nt) = lnCt − ω
N1+γ

t

1+γ
. Then the policy functions

of the representative household are

Nt(µt) =

[
µ(1− τL)(1− α)

µtω(1 + τC)(µ− (1− τK)αβ)

] 1
1+γ

, (36)

Ct(Kt, At, Zt, µt) =

(
1− αβ

µt

)
Yt (Kt, At, Zt, Nt(µt)) , (37)

and Kt+1(Kt, At, Zt, µt) =
αβ

µt

Yt (Kt, At, Zt, Nt(µt)) , (38)

where Yt(Kt, At, Zt, Nt(µt)) denotes the Cobb-Douglas production function. Given the policy
functions of the household, the prices in the economy can be determined by equations (17)
and (18). The transfers to the households are then determined by the government budget
constraint (33).

Proof. See Appendix II.

Proposition 1 presents the solution for the representative agent economy. Fluctuations in

the markup µt drive changes in labor supply Nt, while shocks to productivity (At, Zt) affect

output Yt. Consumption Ct and capital investment Kt+1 are linear functions of output. As

noted by Brock and Mirman (1972), this model is highly simplistic and omits key real-

world dynamics. Despite these limitations, we use it as a benchmark, providing an exact

reference to evaluate our methodology. We calibrate the model to conventional values,

which are summarized in Appendix II. We use the analytical solution of proposition 1 to

simulate long time series of four economies: We simulate three satellite economies with

(I) TFP and labor-augmenting productivity shocks, (ii) TFP and markup shocks, (iii) labor-

augmenting productivity and markup shocks. Finally, we simulate a time series of the full

model (iv) with all three shocks at the same time. We train two neural networks, one on
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Figure 3 Evaluation of the surrogate model with an analytical RBC model

(a) Prediction of surrogate against data

(b) Error distribution of surrogate model

the simulated data from the true model and one on the combined dataset of our satellite

models. The neural networks consist of three hidden layers, each with 128 neurons, using

the CELU activation function. The optimizer employed is AdamW, and training minimizes

the mean squared error between the predicted and true values. The learning rate follows a

cosine annealing schedule, starting at 10−3 and decaying to 10−7. [color = red!40]Include

the graphics containing the errors in the approximation

Figure 3 illustrates the performance of our methodology. Panel 3a) compares the sur-

rogate model’s predictions to the actual data generated by the full model, demonstrating

the accuracy with which our approach captures the true dynamics. Panel 3b) presents the
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errors of the surrogate model relative to the true data generation process, alongside the

errors of the deep neural network trained directly on that process. This comparison allows

us to assess the performance loss incurred by restricting our neural network to training

only on satellite model data.

When evaluating our generative economic modeling algorithm against the true data in

Panel 3a), we find that the methodology effectively captures the dynamics of the exoge-

nous stochastic processes At, Zt, and µt. The surrogate model performs well overall, with

minor imprecision occurring only in the case of large and infrequent shocks, where it tends

to underpredict values. For the endogenous variables Kt, Ct, and Lt, the model maintains

strong performance, albeit with slightly lower accuracy than for the exogenous processes.

Specifically, it underpredicts capital Kt and consumption Ct at the upper end of the data

range while slightly overpredicting labor supply Lt. This behavior likely stems from the lim-

ited number of observations in these regions, requiring the neural network to extrapolate.

The fit can be further improved by expanding the dataset and optimizing the number of

training epochs, enhancing the model’s ability to capture extreme values more accurately.

We can assess the prediction errors of the neural network in relative terms in Panel

3b). The blue bins represent the relative errors of the surrogate model compared to the

predicted variable values, while the orange bins show the corresponding errors of a deep

neural network trained on the full dataset rather than on slices generated from satellite

models. Since the surrogate model is trained on limited data, it is expected that its relative

errors are larger than those of the fully trained deep neural network.

Both neural networks achieve high accuracy in predicting the exogenous processes At,

Zt, and µt, with relative errors well below one percent. The largest relative errors for

the surrogate model occur in the prediction of capital Kt, though they remain under one

percent. Notably, even the deep neural network trained on the full dataset struggles to

predict capital stock with high precision, highlighting an inherent challenge in predicting

this variable. In contrast, the surrogate model performs exceptionally well in predicting

consumption Ct and labor supply Lt, achieving a level of accuracy comparable to the fully

trained neural network.

While the surrogate model exhibits some errors, its overall performance is strong. It

effectively captures the dynamics of the full model, with only minor difficulties in predicting

the capital stock—a challenge that even the fully trained neural network faces. Importantly,

all errors remain small in relative terms, such that the method of generative economic

modeling provides a reliable and useful approximation of the full model’s dynamics.

Besides visual inspection, table 1 illustrates the fit of generative economic modeling

quantitatively. For that we use the Mean Squared Error (MSE) and the Mean Absolute
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Table 1 Fit of the method for different model versions

Model Mean Squared Error Mean Absolute Error Euler Eq. Error (%)
Analytical 2.88× 10−6 7.10× 10−4 -
Nonlinear 3.36× 10−4 6.57× 10−3 1.09

Krusell-Smith 9.50× 10−8 1.99× 10−4 0.76
HANK - - 3.23

NOTE - Mean Squared Error (MSE) and Mean Absolute Error (MSA) compare the predictions of the surrogate model against
the true data. The Euler Equation Error (EEE) calculates the relative error in the Euler equation for the model. We cannot
calculate the MSE or the MAE for the HANK model, as we do not know the true model solution. In the Krusell-Smith and
the HANK model the measure is calculated as the weighted Euler equation error, where the weights are the measures in the
distribution.

Error (MAE) of the predictions of the model approximated through our methodology com-

pared to the true data generation process. Both, the MSE and the MAE are low considering

that we use a standard specification of the neural network and do not fine tune the hyper-

parameters to the application at hand.

3.2.2 Generative Economic Modeling with a nonlinear model

In this section, we illustrate our methodology using a nonlinear medium-sized version of

our RBC model. We abstract from shocks to labor-augmenting productivity Zt and to the

markup µt, hence shocks to TFP At are the only drivers of supply-side fluctuations. We as-

sume that households remain ex-ante and ex-post identical, such that we can represent the

household side with a representative agent. Moreover, households have KPR-preferences

u(Ct, Nt) =
C1−σ

t − 1

1− σ
− ω

N1+γ
t

1 + γ
(39)

such that optimal household behavior can be described by the Euler equation and the

optimal labor supply condition:

C−σ
t = βEt

[
(qt+1 + (1− τK)rt+1)C

−σ
t+1

]
ωNγ

t =
1− τLt
1 + τC

wtC
−σ
t .

Contrary to the former section, we allow for capacity utilization choice and allow for

capital adjustment costs with a nonlinear specification as illustrated in equations (23) and

(24). The model is solved with global methods, specifically policy function iteration, to

account for all nonlinear features. Within the class of policy function iteration methods, we

use time iteration with linear interpolation as in Richter, Throckmorton and Walker (2014)

and Bianchi, Melosi and Rottner (2021). The parameter choices are conventional and
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chosen to ensure strong nonlinearities in the propagation of shocks, as outlined in Appendix

II. Figure 8 illustrates the nonlinearities in response to shocks due to these features.

We generate time series data for three satellite models, each subject to two out of the

three possible shocks. Hence, we solve and simulate satellite models with (I) TFP and dis-

count factor shocks, (ii) TFP and depreciation shocks, and (iii) discount factor and depre-

ciation shocks. Moreover, we simulate a fourth model in which all three shocks are active

simultaneously. We train two neural networks, one on the simulated data from the true

model and one on the combined dataset of our satellite models. The neural networks con-

sist of five hidden layers, each with 128 neurons, using the CELU activation function. The

optimizer employed is AdamW, and training minimizes the mean squared error between

the predicted and true values. The learning rate follows a cosine annealing schedule, start-

ing at 10−3 and decaying to 10−10. [color = red!40]Include the graphics containing the

errors in the approximation

Figure 4 illustrates the performance of our algorithm for the medium-sized nonlinear

DSGE model. Panel 4a) illustrates the fit of the surrogate model against the true data,

while panel 4b) illustrates the relative errors of the surrogate model and of a deep neural

network that is trained on the dataset generated by the full model.

Comparing the surrogate model’s predictions with the true data in panel 4a) demon-

strates that our methodology provides a strong fit, even for a medium-sized DSGE model

with nonlinearities. The predicted values closely align with the true values, addressing the

issue of under- and overprediction observed in the analytical version from the previous

section. The model performs well in predicting exogenous processes (not illustrated) and

provides a reasonable fit for endogenous variables. Among these, capital Kt exhibits the

best fit, while investment It shows the largest deviations due to its high volatility, driven

by nonlinear adjustment costs. Notably, the model’s ability to predict the price of capital qt
remains unaffected by these nonlinearities.

The relative prediction errors in panel 4b) indicate that the surrogate model effectively

captures the true dynamics of the approximated model. For all endogenous variables except

investment It, relative errors remain well below one percent and are comparable to those

generated by the deep neural network trained on the full dataset. In contrast, the relative

errors for It reach up to 2%, highlighting a weaker performance in predicting investment.

Furthermore, the deep neural network trained on the full dataset significantly outperforms

the surrogate model. A possible explanation for this discrepancy is the nonlinear dynamics

underlying investment: certain shocks have minimal impact on It, limiting the information

available in the satellite datasets. As a result, the surrogate model extracts less relevant

information during training, reducing its predictive accuracy for investment.
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Figure 4 Evaluation of the surrogate model with a nonlinear medium-sized RBC model

(a) Prediction of surrogate against data

(b) Error distribution of surrogate model

Table 1 illustrates quantitatively that our approximation performs reasonable well, but

that the nonlinear dynamics reduce our accuracy compared to the analytical model as both

MSE and MAE increase. For the nonlinear model we also compute the Euler equation Error

(EEE).11 With 1.09% the Euler equation error is large, however not exessive given that the

economy features strong nonlinearities.

Overall, the surrogate model effectively captures the dynamics of the underlying model

11 To calculate the EEE, we use the predictions of the surrogate model for consumption and capital today
together with exogenous processes for the shocks. We then calculate the expectations on the right-hand-
side of the Euler equation by Monte Carlo simulation.
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and even improves its forecasting performance for endogenous variables compared to the

previous section. Although forecast errors are higher for variables exhibiting nonlinearities,

such as investment It, the relative errors remain small.

3.2.3 Generative Economic Modeling with Heterogeneous Agents

This section applies our methodology to a model with heterogeneous households. In con-

trast to earlier sections, we now incorporate both ex-ante and ex-post heterogeneity, fol-

lowing the framework of Krusell and Smith (1998). As a result, the joint distribution of

wealth and income becomes a state variable of the model.

To simplify the solution of the model, we abstract from endogenous capacity utilization

(ut = 1) and set capital adjustment costs to zero (ϕt = κ = 0). Households maximize a

standard CRRA utility function:

u(cit) =
c1−σ
it − 1

1− σ

subject to the budget constraint in equation (29). Since labor supply entails no disutility,

households supply one unit of labor inelastically.

We shut down government activity and keep three aggregate shocks: productivity (At),

discount factor (ζt), and depreciation (δt). To solve the model, we discretize both aggregate

and idiosyncratic state processes using the method of Tauchen (1986). Each aggregate

shock is approximated by a four-state Markov chain. Similarly, idiosyncratic income shocks

hit are modeled using a four-state Markov chain. Unlike Krusell and Smith (1997) and

Krusell and Smith (1998), we abstract from any dependence of idiosyncratic income risk

on aggregate TFP.12

A detailed description of the solution algorithm for the heterogeneous agent model

with multiple aggregate shocks is provided in Appendix II. Here, we briefly summarize

the approach. We solve the household problem using the endogenous grid point method

of Carroll (2006), and simulate the economy using the non-stochastic simulation method

from Young (2010). Since the model includes aggregate shocks, households require a per-

ceived aggregate law of motion (ALM) for aggregate capital. Following Krusell and Smith

(1998), we assume a state-dependent log-linear ALM and update it iteratively until con-

vergence, ensuring that the gap between the true and perceived laws is minimal, in line

with the concerns raised by Den Haan (2010). Figure 9 (in the appendix) shows that

12 Although we can allow for a correlation between idiosyncratic and aggregate risk, with more than two
aggregate states there exist various possibilities to allow for cyclical variation in idiosyncratic income risk.
We leave the exploration of the impact of cyclical idiosyncratic income risk on the performance of our
method for future research.
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Figure 5 Evaluation of the surrogate model with a heterogeneous agent model

(a) Prediction of surrogate against data

(b) Error distribution of surrogate model

the model-generated capital series closely match the ALM, with a maximum deviation of

less than 0.01. We solve the model using four idiosyncratic income states, four aggregate

states per shock, 100 asset grid points (with an exponential spacing to capture the lower

wealth range), and 20 grid points for aggregate capital. The full model therefore spans

44 × 100× 20 = 512,000 state variables.

For our generative economic modeling approach, we solve three distinct satellite mod-

els, each featuring two out of the three aggregate shocks. Specifically, we solve satellite

models with (i) TFP and discount factor shocks, (ii) TFP and depreciation shocks, and (iii)

discount factor and depreciation shocks. Finally, we solve the full model featuring all three

aggregate shocks. We use the policy functions of the solved economies to simulate a long

time series of each economy. We train two neural networks, one on the simulated data

from the true model and one on the combined dataset of our satellite models. The neural

networks consist of five hidden layers, each with 128 neurons, using the CELU activation

function. The optimizer employed is AdamW, and training minimizes the mean squared

error between the predicted and true values. The learning rate follows a cosine annealing

schedule, starting at 10−3 and decaying to 10−10. [color = red!40]Include the graphics

containing the errors in the approximation

Figure 5 evaluates the performance of our algorithm for the heterogeneous agent model.

Panel 5a) shows the fit of the surrogate model relative to the true simulated data, while

Panel 5b) compares the relative errors of the surrogate model and a deep neural network
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trained on the full model’s dataset. Panel 5a) demonstrates that the surrogate model pro-

vides an excellent fit in the heterogeneous agent setting. The predicted values closely track

the true data, and the model performs well in capturing the dynamics of the endogenous

variables. Panel 5b) shows that the relative prediction errors of the surrogate model remain

consistently below one percent across all endogenous variables, comparable to the perfor-

mance of the deep neural network trained on the full dataset. While the neural network

marginally outperforms the surrogate model, this difference may stem from the increased

complexity of the heterogeneous agent environment—specifically, the interaction of mul-

tiple shocks affecting households near the borrowing constraint. These nonlinearities can

reduce the amount of relevant structure the surrogate model can extract during training,

particularly for variables such as investment.

Despite this, the surrogate model captures the core dynamics of the economy remarkably

well. Compared to the results in the representative agent case, it even shows improved pre-

dictive performance for some endogenous variables, while maintaining low overall error

levels. To calculate the Euler Equation Error of the model, we also applied our methodology

to predict the policy functions, as well as the dynamics of the distribution of households at

each individual point of the discretized individual state space point. In both applications,

our method works well and approximates the true dynamics almost exactly using genera-

tive economic modeling from the dynamics of the satelite models. Table 1 supplements the

graphical analysis and shows that in terms of MSE, MAE, and EEE the model approxima-

tion is satisfying. The average Euler equation error of 0.76% indicates that over the entire

distribution of households the error in the Euler equation is below one percent.

4 Global HANK model with financial frictions

In this section, we use our method of generative economic modeling to globally solve a het-

erogeneous agent New Keynesian model with financial frictions. It is challenging to solve

the model for three reasons. First, the solution requires forecasting the forward-looking

part of the Phillips-curve using a perceived law of motion, hence facing the same issue as

our heterogeneous agent model in section 3.2.3. Second, in the simulation stage, we need

to find market-clearing levels of today’s inflation as input for our estimation of the per-

ceived law of motion. This requires a root-finding step for each simulation period, which is

numerically costly. Finally, introducing the cash-in-advance constraint introduces asymmet-

ric responses to the economy when financial constraint. When introducing a large number

of aggregate shocks to the economy, all numerical issues are multiplied. Consequently, it

provides a natural application for our methodology.
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4.1 Description of the Model

The model is a HANK model that includes both idiosyncratic and aggregate risk. House-

holds insure against both types of risks by saving in liquid assets subject to a borrowing

limit. Intermediate goods are produced using labor under monopolistic competition, where

firms face Rotemberg price adjustment costs and a cash-in-advance constraint limiting pro-

duction in times of financial distress. A final goods bundler bundles intermediate goods into

a final good. The government raises taxes to issue bonds and for government consumption,

while the central bank sets the nominal interest rate as a function of price inflation. The

model features shocks to the discount factor, shocks to aggregate productivity, monetary

policy shocks, as well as shocks to the ability of firms to borrow through the financial sector.

Households There exists a continuum i ∈ [0, 1] of households which choose to obtain

utility from consumption cit and leisure, and save in liquid assets bit+1 such as to insure

against idiosyncratic income fluctuations in labor productivity hit. Labor productivity fol-

lows an AR(1) process in logs as in equation (30). Households maximize the following

utility:

E0

∞∑
t=0

βt exp(ζt)u(cit, nit), (40)

where nit denotes their labor supply and ζt denotes the shock to the discount factor. We

assume that the discount factor shock follows an AR(1) process as in equation (28). We

assume that household felicity is of Greenwood, Hercowitz and Huffman (1988) (GHH)

form13 together with a CRRA specification:

u(cit, nit) =

(
cit − ωhit

n1+γ
it

1+γ

)1−σ

− 1

1− σ
(41)

ω is a scalar for multiplying the disutility of supplying labor. Households maximize utility

subject to the budget and borrowing constraint

cit + bit+1 = (1− τt)wtnithit +Rtbit + (1− τt)Πit, (42)

bit+1 ≥ B̄ (43)

13 We follow Bayer, Born and Luetticke (2022) with this utility specification for its numerical advantages. It
allows us to compute labor supply only as a function of the wage rate. Bayer, Born and Luetticke (2024)
provides a detailed description in favor of the use of GHH preferences contrary to King, Plosser and Rebelo
(1988) preferences.
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where bit+1 denotes savings of the household, τt the income tax, Rt = 1+rt the real interest

rate, and Πit profits from owning the firm sector. We distribute profits proportional to the

idiosyncratic productivity hit. B̄ denotes the exogenous borrowing limit of households.

Firms A final goods producer bundles a continuum of differentiated varieties j ∈ [0, 1]

into a final good according to a Dixit-Stiglitz aggregator

Yt =

(∫ 1

0

y
η−1
η

jt dj

) η
η−1

, (44)

with elasticity of substitution η. This yields an optimal demand for each variety j of

yjt =

(
pjt
Pt

)−η

Yt, (45)

where Pt = (
∫ 1

0
p1−η
jt dj)

1
1−η denotes the price level. Each differentiated variety is produced

by an intermediate goods producer with index j using labor as input. Production follows

the linear production function

Yjt = AtNjt, (46)

where At denotes aggregate productivity that follows an AR(1) process in logs as in equa-

tion (20). Intermediate goods producers are subject to quadratic price adjustment costs in

logarithmic price changes. Hence, for price-setting, the firm maximizes

E0

∞∑
t=0

βtYt

{(
pjt
Pt

−MCt

)(
pjt
Pt

)−η

− η

2κ

(
log

pjt
pjt−1

)2
}
, (47)

with a time-constant discount factor.14 The producer’s first-order condition gives rise to a

New Keynesian Phillips curve in goods price inflation

log(πt) = βEt

[
log(πt+1)

Yt+1

Yt

]
+ κ

(
MCt −

η − 1

1

)
, (48)

where Πt is the gross inflation rate Πt ≡ Pt

Pt−1
, and MCt is the real marginal costs. The price

adjustment then creates real costs η
2κ
Yt log(Πt)

2.

Finally, intermediate goods producers are subject to a financing constraint when paying

their labor bill. Firms need to borrow their wage bill from a perfectly competitive financial

intermediary at a zero intratemporal interest rate; however, due to agency costs are not

14 There exist multiple possible discount factors for the price-setting problem. We use the standard constant
discount factor from the DSGE literature based on the discussion of Bayer et al. (2019).
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able to do so up to the full level of their revenue. Hence firms face the following borrowing

constraint:

wtNjt ≤ λtyjt, (49)

where λt denotes the fraction of output that firms are allowed to borrow. We assume λt to

follow an AR(1) process in logs:

lnλt = −(1− ρλ)
σ2
λ

2
+ ρλ lnλt−1 + ϵλt with ϵλt ∼ N(0, σ2

λ). (50)

This implies that if λt < MCt, the household is constrained in its labor bill and firms can

only demand labor up to the wage rate wt = λtAt. Hence, if firms are financially constraint,

they cannot produce up to their capacity, because they are limited in the wages they can

pay. This introduces a nonlinearity in the economy, which makes the solution of the model

numerically more demanding.

Government The government operates a monetary and a fiscal authority. The monetary

authority controls the nominal interest rate on liquid assets, while the fiscal authority issues

government bonds to finance deficits and adjusts expenditures to stabilize debt in the long

run and output in the short run.

We assume that monetary policy sets the nominal interest rate it on bonds following a

Taylor-type rule:

(1 + it+1) = Πϕπ
t exp(ιt), (51)

where ϕπ governs the extend to which the central bank attempts to stabilize inflation. The

larger ϕπ, the stronger the reaction of the central bank to changes in the inflation rate. ιt is

an exogenous monetary policy shock that follows an AR(1) process in logs:

ln ιt = −(1− ρι)
σ2
ι

2
+ ρι ln ιt−1 + ϵιt with ϵιt ∼ N(0, σ2

ι ) (52)

The real interest rate is then determined using a Fisher relation Rt = 1 + rt =
1+it
Πt

Moreover, we assume that the government issues bonds according to the rule

Bt+1

B̄
=

(
RtBt

R̄B̄

)ρB
(
Πt

Π̄

)−γπ (Tt

T̄

)−γT

, (53)

using tax revenues, Tt = τYt, to finance government consumption, Gt, and interest on

outstanding debt. The coefficients B̄, Π̄, and T̄ are normalization constants. ρB captures

whether and how fast the government seeks to repay its outstanding obligations, BtRt.
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For ρB < 1, the government actively stabilizes real government debt, and for ρB = 1,

the government rolls over all outstanding debt, including interest. The coefficients γπ
band γT capture the cyclicality of debt issuance: for γπ = γT = 0, new debt does not

actively react to tax revenues and inflation, but only to the value of outstanding debt; for

γπ > 0 > γT , debt is countercyclical; for γπ < 0 < γT , debt is procyclical. We assume that

government expenditure Gt adjusts such that the government budget constraint is satisfied

Gt +RtBt = Bt+1 + Tt

Market clearing Market clearing requires that the labor market, the bond market, as well

as the goods market, clear. GHH preferences imply that households supply labor according

to nit = ( (1−τ)wt

ω
)

1
γ = Nt where the last equality follows from

∫ 1

0
hitdi = 1. Hence, labor

market clearing is achieved if

Nt =


(

(1−τ)AtMCt

ω

) 1
γ

if unconstrained(
(1−τ)Atλt

ω

) 1
γ

if constrained
. (54)

Bonds market clearing is achieved if

Bt+1 =

∫ 1

0

bit+1di, (55)

and goods market clearing is achieved if

(1− η

2κ
(lnΠt)

2)Yt = Ct +Gt, (56)

where the left-hand side indicates production adjusted for price-adjustment costs.

Computational challenges The problem faces three computational challenges. First, to

solve the model, we need to employ the algorithm of Krusell and Smith (1997) to forecast

the forward-looking part Et

[
log(πt+1)

Yt+1

Yt

]
in the Philips curve, as well as today’s inflation

Πt using a perceived law-of-motion. This requires solving and simulating the model mul-

tiple times to update the law of motion until convergence. This issue is identical to the

computation issue illustrated in section 3.2.3. Second, we need to calculate the market-

clearing inflation rate in the simulation step to update the prediction of the nowcast of

inflation, which is necessary for the solution of the household problem. Hence, after solv-

ing the household problem globally, we need to introduce a root-finding step. Concretely,

we guess an inflation rate Π̃t that then determines the nominal interest rate it+1, relevant
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for the savings choice of the households. Given the aggregate states (Bt, λt, At, ζt, ιt), we

impose labor market clearing by using equation (54) and then update the guess for infla-

tion Π̃t until bond market clearing is achieved. This additional step requires us to solve the

household problem (although only for one backward iteration) multiple times. This adds

additional computational time. Third, adding the cash-in-advance constraint implies that

the economy features nonlinear dynamics if intermediate good firms are financially con-

strained. This requires additional runtime to solve for accurate perceived laws of motion.

4.2 Generative Economic Modeling Solution

The global solution of this model with conventional methods remains numerically in-

tractable. Consequently, we solve the model using our methodology of generative economic

modeling. For that, we generate time series data for three satellite models, each subject

to two out of the four possible shocks. Hence, we solve and simulate satellite models with

(i) financial, and TFP shocks, (ii) financial and discount factor shocks, and (iii) financial

and monetary shocks. We also solve a model version without financial shocks. For the

approximation of the true solution, we solve three satellite models, each including one of

the three non-financial shocks. Hence we solve and simulate models with (i) TFP shocks,

(ii) discount factor shocks, and (iii) monetary shocks. We use this solution of the model

to understand the effect of introducing financial shocks into a HANK model. We train

two neural networks, each on the combined datasets of our satellite models. The neural

networks consist of five hidden layers, each with 128 neurons, using the CELU activation

function. The optimizer employed is AdamW, and the training minimizes the mean squared

error between the predicted and true values. The learning rate follows a cosine annealing

schedule, starting at 10−3 and decaying to 10−10. Table 1 presents the Euler equation error

of 3.23% for our approximation.

The error is the highest for all our applications, as we only use satellite models with two

shocks each for the approximation of a model with a total of four shocks. Consequently,

we only have a limited overlap of the model features in the sense illustrated in figure 1.

Moreover, the model features nonlinearities that increase the Euler equation error, espe-

cially as we take the average over all agents in the economy. Incorporating more shocks

simultaneously in the satellite models surely improves the fit of the method in this case.

We consider the Euler equation error not prohibitively high to inspect nonlinearities of the

model, as well as the effect of multiple shocks being present in the model at the same time.
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Figure 6 Generalized impulse response function of HANK economy with financial friction

4.2.1 Impact of financial friction shock

Having solved a HANK model with financial shocks, we are interested in the transmission

of financial shocks in our model. To analyze the impact of a financial friction shock on

the economy, we investigate the generalized impulse responses of the model to financial

shocks of varying sizes. Concretely, we illustrate response of the economy to a shock in

λt of −5% and −7.5% relative to its mean. Figure (6) illustrates the generalized impulse

response function of the solved model to these shocks.

A drop in λt, the variable determining the space of the financial sector for intratemporal

lending induces a recession for both shock sizes. As result of the drop, firms are constraint

and hire less labor Nt, which reduces production Yt. As result of this negative supply shock,

consumption Ct drops, while inflation Πt increases. The central bank increases the nominal
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interest rate It going forward in response to the hike in inflation, thereby increasing the real

interest rate Rt. Bond supply Bt increases by the government, triggering countercyclical

government expenditure.

Besides having these qualitative responses in common, the economy features nonlin-

earity in response to different sizes of shocks. The 7.5% decrease in lambda triggers a

substantially larger recession than the 5% decrease in lambda. This manifests itself in a

larger reduction in labor Nt, a larger decrease in output Yt, and a larger decrease in con-

sumption Ct. As the shock to the supply side is more severe, inflation Πt increases more,

triggering a larger increase in the nominal interest rate It. The shock is so contractionary

that the marginal costs for production does even increases in response to the shock before

dropping, indicating that in the first period the costs of production increase due to the

financial friction.

To summarize, shocks to λt that serves as a financial shock here triggers nonlinear dy-

namics in response to different shock sizes. Such dynamics can be especially important

when trying to understand financial crisis. Generative economic modeling serves as a use-

ful tool to solve models with nonlinear dynamics, while keeping it numerically tractable.

4.2.2 Implications of more aggregate shocks

Second, we are interested in the interaction of different sources of risk with each other. For

that, we compare the dynamics of the economy with four shocks with an economy that only

features the financial shock and a TFP shock. Through this analysis, we aim to understand

how the presence of more shocks in the model shapes the response of the model. Figure

(7) illustrates impulse responses of the economy with four shocks to a TFP shock compared

to the impulse response of the satelite economy with only the TFP shock and the lambda

shock.

The comparison between the two impulse responses shows how incorporating more

shocks in a model alters the dynamics of the model. For all variables illustrated, the re-

sponses of the variables after the financial shock is attenuated in the model with all four

shocks compared to only featuring a TFP shock. Hence, for the model environment we

solve here, introducing more shocks beyond the financial shock and the TFP shock reduces

the response of endogenous variables to the financial shock. One economic explanation

for this is that in the presence of more aggregate shocks, households have a larger pre-

cautionary incentive. Hence, knowing that they will face larger aggregate volatility with

more shocks, they insure themselves better through precautionary savings, for example. In

response to one of these shocks hitting, households are then better insured.

In the context of our model here, integrating more shocks dampens the response of
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Figure 7 Comparison of generalized impulse responses to a lambda shock for model with
two and four shocks

the economy to the nonlinear financial shock. The methodology of generative economic

modeling allows users to integrate more shocks to study the implications that integrating

more shocks has for their model.

5 Conclusion

Our study introduces generative economic modeling, a novel approach that combines con-

ventional solution methods with artificial intelligence to overcome computational barriers

in solving complex dynamic economic models. By using neural networks trained on data
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generated from satellite models, we provide an alternative to standard deep learning-based

approaches, which often require extensive fine-tuning and can suffer from instability due to

their endogenous feedback loops. In contrast, our methodology ensures stability and scal-

ability by using precomputed solutions from conventional methods, allowing for efficient

training and accurate approximations of the full economic model.

The results demonstrate that this approach successfully captures model dynamics with

high precision, yielding prediction errors comparable to those of deep neural networks

trained on full model data. Importantly, our method extends the applicability of conven-

tional global solution methods by using recent advances in artificial intelligence. This is

particularly valuable for models featuring higher-order nonlinearities and heterogeneous

agents, where the curse of dimensionality poses significant computational challenges.

Our general approach offers several promising avenues in the future. First, it can be

applied to more complex environments, such as solving nonlinear HANK models by training

on simplified RANK and linearized HANK models. Second, it has the potential to enhance

model estimation techniques, where fast and reliable solutions are critical. Lastly, we are

developing evaluation metrics to assess neural network performance systematically, which

will guide the optimal design of satellite models and network specifications.
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Appendix

I Appendix: Solution of the Asset Pricing Model

This section illustrates our methodology using an analytical asset-pricing model and de-

velops intuition for why the methodology works. In all our applications, the solution of

a model is a set of policy functions that express controls as a function of state variables.

In this first analytical example, the control variable we are looking for is the price of a

nominal bond qt. Let’s assume that the price satisfies the Euler equation:

qt = βEt

[
1

Πt+1

C−γ
t+1

C−γ
t

]
= βEt

[
exp

(
− πt+1 − γ∆ct+1

)]
with πt ≡ lnΠt, ∆ct = lnCt − lnCt−1, where Πt is gross inflation between period t and

t−1, Ct denotes consumption, as well as β, and γ are the discount factor and risk-aversion,

respectively. We can write the equation more compact as

qt = βEt exp(ψ⃗
′yt+1), (57)

where yt = [πt,∆ct]
′ and ψ⃗ = [−1,−γ]′. Hence, the control variable qt is a forward-looking

variable, which depends nonlinearly on the expectations over the dynamics of the state

variables yt+1. In quantitative models, the policy functions we aim to solve for have a

similar form as (57). For example, households make consumption-savings decisions and

firms make capital accumulation decision by forming expectations about the future. To

solve for the exact policy function, we need to introduce a law of motion for the states. We

assume that the dynamics of the states yt are described by a VAR(1) without intercept

yt = A1yt−1 + et, (58)

with et = ηϵt, where ϵt is distributed N(0, I). η is a ny × nϵ matrix, where ny = 2 is

the number of states, and nϵ is the number of shocks. This implies that et is distributed

according to a N(0,Σ), with variance-covariance matrix Σ = ηη′. We give the shocks an

economic interpretation by assuming ϵt = [ϵat , ϵ
ζ
t , ϵ

µ
t ]

′. Hence, the first shock denotes a

TFP-shock, the second shock denotes a discount factor shock, and the last shock denotes

a markup shock. The η matrix then denotes the loadings of the shocks onto the state

variables. With these assumptions, the solution for the asset price qt can be expressed as15

15 The VAR(1) specifies that the vector of variables yt is distributed according to a multivariate normal dis-
tribution. Together with the identity Et exp(xt+1) = exp(µx + 1

2Σx) for a normally distributed vector
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qt = β exp

(
ψ⃗′µt +

1

2
ψ⃗′Vtψ⃗

)
(59)

where µt = A1yt, denotes the conditional mean forecast, and Vt = Σ the conditional

variance of the variables in yt. Let ηij, and aij denote the entries in the i’th row and j’th

column of the shock impact matrix η and the matrix of the VAR A1 respectively. Then the

full solution for the price of the asset can be written as

qt = β exp

(
− (a11 + γa21) πt − (a12 + γa22)∆ct

+ 1
2

[
(η11 + γη21)

2 + (η12 + γη22)
2 + (η13 + γη23)

2
])
. (60)

Equation (60) expresses how the bond price depends on the inclusion of different shocks to

our dynamic system of equations. While the first line components remain unchanged, the

second line changes depending on the shocks that we include in the model. Consequently,

this model serves as a natural illustration for the functionality of our approach.

When solving a simplified version of the above model that contains only two of the three

shocks, the entries η1· and η2· are equal to zero, where the · is a placeholder for the shock

which is not included, anymore. Let us denote the resulting equilibrium price without a

shock i by q\it . Consequently, simplified model versions feature the prices

q
\a
t = β exp

(
− (a11 + γa21) πt − (a12 + γa22)∆ct

+ 1
2

[
(0 + γ · 0)2 + (η12 + γη22)

2 + (η13 + γη23)
2
])

(61)

q
\ζ
t = β exp

(
− (a11 + γa21) πt − (a12 + γa22)∆ct

+ 1
2

[
(η11 + γη21)

2 + (0 + γ · 0)2 + (η13 + γη23)
2
])

(62)

q
\µ
t = β exp

(
− (a11 + γa21) πt − (a12 + γa22)∆ct

+ 1
2

[
(η11 + γη21)

2 + (η12 + γη22)
2 + (0 + γ · 0)2

])
(63)

xt+1 ∼ N(0,Σx) we obtain the closed form expression for the asset price.
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Equations (61) - (63) illustrate that shutting down individual shocks reduces the price of

the risk-free bond compared to the specification with all shocks by a constant.

II Appendix: Real Business Cycle Model

II.1 Appendix: Equilibrium and steady-state of the model

This section illustrates the steady state of the economy. We first illustrate all equations

that characterize the equilibrium before characterizing the steady state.

Equilibrium characterization: In a symmetric equilibrium, the production side is char-

acterized by

Yt : Yt = At(utKt)
α(ZtNt)

1−α (64)

rt : rt + qtδ(ut) =
α

µt

Yt
Kt

(65)

wt : wt =
1− α

µt

Yt
Nt

(66)

ut : qt[δ1 + δ2(ut − 1)] =
α

µt

Yt
ut

(67)

Πt : Πt = µtYt (68)

qt : qt =

[
1− ϕ

(
It
Kt

− δ0t

)κ−1
]−1

(69)

It : Kt+1 = (1− δ(ut))Kt + It −
ϕ

κ

(
It
Kt

− δ0t

)κ

Kt (70)

With four exogenous processes:

µt : lnµt = (1− ρµ)

(
lnµ−

σ2
µ

2

)
+ ρµ lnµt−1 + ϵµt with ϵµt ∼ N(0, σ2

µ) (71)

At : lnAt = (1− ρA)

(
lnA− σ2

A

2

)
+ ρA lnAt−1 + ϵAt with ϵAt ∼ N(0, σ2

A), (72)

Zt : lnZt = (1− ρZ)

(
lnZ − σ2

Z

2

)
+ ρZ lnZt−1 + ϵZt with ϵZt ∼ N(0, σ2

Z), (73)

δ0t : δ0t = δ0 + ϵδt , (74)

The household side is characterized by the aggregate functions Ct, Nt and Kt+1 that

represent the aggregate consumption, labor, and capital function of the (potentially het-
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erogenous) household side of the model. We can characterize the aggregate functions as

Ct : Ct({rt, wt, qt, ζt, τ
k, τL, τC}) =

∫
c∗itdΘt, (75)

Nt : Nt({rt, wt, qt, ζt, τ
k, τL, τC}) =

∫
n∗
itdΘt, (76)

Kt+1 : Kt+1({rt, wt, qt, ζt, τ
k, τL, τC}) =

∫
k∗itdΘt, (77)

with the integral integrating over the distribution of households Θt and lowercase letters

with asterisks denoting the policy functions of a household in period t that are determined

by the first-order conditions

cit : qtuC(cit, nit) = βEt

[
ζt+1

ζt

(
qt+1 + (1− τK)rt+1

)
uC(cit+1, nit+1)

]
(78)

nit : −uL(cit, nit) = (1− τL)wthit
uC(cit, nit)

1 + τC
, (79)

and residually via the budget constraint:

kit+1 : (1 + τC)cit + qtkit+1 =
(
qt + (1− τK)rt

)
kit + (1− τL)wthitnit + Tt +Πit (80)

Generally, the distribution Θt of agents develops according to a law of motion

Θt+1 : Θt+1(hit+1, kit+1) =

∫
kit+1=k∗it

Φ(hit, hit+1)dΘt(hit, kit), (81)

with Φ denoting the transition of idiosyncratic states. In the representative agent case, the

aggregate functions just boil down to the first-order conditions (78), (79), and (80). On

the household side, we then have the exogenous processes:

ζt : ln ζt = −(1− ρζ)
σ2
ζ

2
+ ρζ ln ζt−1 + ϵζt with ϵζt ∼ N(0, σ2

ζ ). (82)

hit : log hit = −(1− ρh)
σ2
h

2
+ ρh log hit−1 + ϵit. (83)

Finally, the government sector is characterized by

Tt : Tt = τCCt + τKrtKt + τLwtNt, (84)
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while market clearing is characterized by

Nt = Nt, (85)

Kt = Kt, (86)

Ct = Ct (87)

Yt = Ct + It, (88)

Hence, in equilibrium, the 25 equations above determine the 25 variables {Yt, rt, wt,

ut,Πt, qt, It, µt, At, Zt, δ0t, {c∗it}i, Ct, Ct, {n∗
it}i, Nt,Nt, Kt, {k∗it}i, Kt+1,Kt+1, ζt, hit, Tt,Θt}.

Steady-State: Based on the description of the equilibrium, we now can turn to describe

the steady state. First, except for idiosyncratic income risk hit all exogenous processes

revert to their long-run averages such that:

µSS : lnµSS = lnµ−
σ2
µ

2
(89)

ASS : lnASS = lnA− σ2
A

2
(90)

ZSS : lnZSS = lnZ − σ2
Z

2
(91)

δSS0 : δSS0 = δ0 (92)

ζSS : ln ζSS = −
σ2
ζ

2
. (93)

In the heterogeneous agent version of the model in the steady state, there still exists het-

erogeneity on the household side in a steady state. The steady state on the household

side is then characterized by constant aggregates, while still featuring fluctuations at the

individual household level. Hence

CSS : CSS = Ct = Ct+1 =

∫
c∗i dΘ

SS, (94)

N SS : N SS = Nt = Nt+1 =

∫
n∗
i dΘ

SS, (95)

KSS : KSS = Kt+1 = Kt+2 =

∫
k∗i dΘ

SS, (96)

with ΘSS denoting the time-invariant stationary distribution of households that solves

ΘSS : ΘSS(hi, ki) =

∫
ki=k∗i

Φ(hit, hit+1)dΘ
SS(hi, ki). (97)
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The lower-case letters with asterisks subscript i denote the policy functions given constant

aggregates. In the representative version of the model, this boils down to

rSS : qSS = β
[(
qSS + (1− τK)rSS

)]
(98)

N SS : −uL(CSS,N SS) =
1− τL

1 + τC
wSSuC(CSS,N SS), (99)

CSS : (1 + τC)CSS =

(1− τL)wSSN SS + (1− τK)rSSKSS + T SS +ΠSS. (100)

Using the market clearing conditions determines aggregate consumption and aggregate

labor

CSS = CSS and N SS = NSS (101)

We use steady-state labor supplyNSS and the steady-state real interest rate rSS to pin down

the production side:

Y SS : Y SS = ASS(uSSKSS)α(ZSSNSS)1−α (102)

KSS : rSS + qSSδ(uSS) =
α

µSS

Y SS

KSS
(103)

wSS : wSS =
1− α

µSS

Y SS

NSS
(104)

uSS : qt[δ1 + δ2(u
SS − 1)] =

α

µSS

Y SS

uSS
(105)

ΠSS : Πt = µtYt (106)

qSS : qSS =

[
1− ϕ

(
ISS

KSS
− δSS0

)κ−1
]−1

(107)

ISS : ISS =

(
δ(uSS) +

ϕ

κ

(
ISS

KSS
− δSS0

)κ)
KSS (108)

Government transfers are then determined by

T SS : T SS = τCCSS + τKrSSKSS + τLwSSNSS, (109)

Finally, the capital and the goods market have to clear

KSS = KSS, (110)

and Y SS = CSS + ISS. (111)
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Having defined all equations that have to hold in steady state, we can now characterize the

solution for a specific steady state.

Steady-State determination: It is easiest to start by imposing some normalization on

the production side. We want to normalize capacity utilization uSS and the price for capital

to unity in the steady state qSS. From equations (105) and (107) this derives the parameter

restrictions
ISS

KSS
= δSS0 and δ1 =

α

µSS
Y SS. (112)

which pins down the depreciation values besides investment in steady state. The rest of

the steady state can then be characterized by a joint solution of the household side and

the firm side that satisfies market clearing conditions. In the heterogenous agent case,

we solve the household problem for each household along the state space given a guess

for aggregate capital Kt and aggregate labor Nt, obtain the aggregate labor function (95)

and capital function (96) and update the guesses for capital and labor until labor market

clearing (101) and capital market clearing (110) are satisfied.

In the representative agent case, equation (98) determines the steady state real interest

rate as

rSS : rSS =
1− β

β(1− τK)
. (113)

In both cases, an interest rate also determines the steady-state capital-to-labor ratio and

wage rate

KSS :
KSS

NSS
=

(
α

rSS + δSS0

ASS(ZSS)1−α

µSS

) 1
1−α

(114)

wSS : wSS = (1− α)
ASS(ZSS)1−α

µSS

(
KSS

NSS

)α

. (115)

II.2 The analytical model

Derivation of the analytical model The part below derives the proof related to the an-

alytical model in section 3.2.1. To solve the model analytically, we abstract from shocks

to the discount factor (ζt) and depreciation rate (δt). We keep the shocks to technology

(At), productivity (Zt), shocks to the markup (µt). Finally, we abstract from capital in-

come taxation (τK = 0) and assume full depreciation (δ0t = 1).16 Moreover, we abstract

from household heterogeneity and let households be ex-ante identical by assuming away

16 The combination of the assumptions renders the model unrealistic, as already noted by Brock and Mirman
(1972) themselves. We do not employ the model for realistic reasons, but because it provides us with an
analytical benchmark we can use. This also motivates the choice of our shocks.
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differences in idiosyncratic income hi0 = 1 and Πit = Πt ∀ i and initial capital holdings are

identical ki0 = K0 ∀ i. We make households ex-post identical by disregarding idiosyncratic

income risk σ2
h = 0. The absence of ex-ante or ex-post heterogeneity enables us to repre-

sent the household side through a representative agent. Therefore, we drop the individual

index i to describe the variables of interest.

Proof. The proof employs a guess-and-verify approach. Guess that the policy function for

savings is given by Kt+1 = ΓYt. Substituting the guess into the goods market clearing

condition (35) while imposing the parameter restriction δ = 1 yields

Ct = (1− Γ)Yt.

We use the two guesses and substitute into the Euler equation (31)

1

Ct

= βEt

[
α

µt+1

Yt+1

Kt+1

Ct+1

]
⇔ 1

(1− Γ)Yt
= βEt

[
α

µt+1(1− Γ)Kt+1

]
,

from which it is straightforward to see that Γ = αβ
µ

given that Et
1

µt+1
= µ−1 with ρµ = 0.

Note that the value-added-tax (1 + τC) drops from the Euler equation, since it is constant

over time. To obtain the policy function (36) we substitute the guesses with specified Γ

into the labor-supply condition (32)

(1− τNt )wt

(1 + τC)Ct

= ωNγ
t ⇔ (1− τNt )(1− α)

µt(1 + τC)(1− Γ)Nt

= ωNγ
t ,

from which we obtain expression (36) when solving for Nt.

With KPR-preferences with log-felicity over consumption the income and substitution

effect of wage changes cancel out. Therefore, only shocks to the wage tax rate τLt and the

markup µt impact the level of equilibrium labor supply.

Calibration Table 2 illustrates the parameter values that we use for solving the model.

We largely use standard values from the literature, but some variables require further ex-

planation. First, we have a steady-state markup µ of 1.5, which is very high. We introduce

such a high markup value such as to amplify the effects of markup shocks on the economy.

Moreover, we shut down the government by setting all tax rates equal to zero. Finally,

we do not only simulate the economy with fixed volatilities of the shocks but allow for

different volatility levels. While the model only features three shocks, the shocks can have

different volatilities, such that we generate data sets for all three shock combinations with
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Table 2 Parameter values of the analytical Brock and Mirman (1972) model

Parameter Value Description Parameter Value Description

Households Exogenous processes
β 0.96 Discount factor A 1.0 Steady state TFP
γ 5 Inverse Frisch ρa 0.9 TFP persistence
ω 1.0 Scale labor disutility σa {0.0, 0.01, 0.05} TFP std.

Z 1.0 Steady state labor prod.
Firms ρz 0.9 Labor prod. persistence
α 0.33 Capital share σz {0.0, 0.01, 0.05} Labor prod. std.
δ 1.0 Depreciation rate µ 1.1 Steady State Markup

ρµ 0.0 Markup persistence
Government σµ {0.0, 0.01, 0.05} Markup std.
τL 0.0% Labor tax rate level
τR 0.0% Capital tax rate level
τC 0.0% Value-added tax rate level

NOTE - All parameters in the table are calibrated to a yearly frequency.

Table 3 Parameter values of the nonlinear medium-sized RBC model

Parameter Value Description Parameter Value Description

Households Firms
σ 1 Risk aversion α 0.33 Capital share
β 0.99 Discount factor δ0 0.025 Depreciation rate
γ 1 Inverse Frisch δ1 αY SS Depreciation rate
ω 0.5 Scale labor disutility δ2 5δ1 Depreciation rate

κ 2 Cap. adj. cost curvature
ϕ̄ 2.5 High slope of cap. adj. cost

Exogenous processes ϕ 0.025 Low slope of cap. adj. cost
A 1.0 Steady state TFP
ρa 0.95 TFP persistence Government
σa 0.01 TFP std. τL 0.0% Labor tax rate level
ρζ 0.95 Discount factor persistence τR 0.0% Capital tax rate level
σζ 0.05 Discount factor std. τC 0.0% Value-added tax rate level
σδ 0.004 Depreciation std.

NOTE - All parameters in the table are calibrated to a quarterly frequency.

different volatilities. This also challenges the surrogate network since it needs to learn the

model dynamics for different shock volatilities.

II.3 Nonlinear version

Table 3 presents the parameter choices for solving the model. Most parameters align

with standard values in the literature but are calibrated at a quarterly frequency. Com-

pared to the model in Section 3.1, we introduce partial depreciation, a capacity utilization

choice, a lower Frisch elasticity of labor supply, and capital adjustment costs. Additionally,

we incorporate nonlinear capital adjustment costs by allowing ϕt to take values ϕ̄ and ϕ

depending on the capital stock. The other parameters are standard.

The model features strong nonlinearities as the impulse response functions (IRFs) in

Figure 8 highlight. In this simulation, we compare the impact of an expansionary and con-

tractionary three-standard deviation TFP shock. We display the percentage deviation from
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Figure 8 IRFs and Nonlinear Propagation of the TFP Shock

the stochastic steady state and mirror the IRFs of the negative TFP for easier comparison.

The state-dependent investment costs result in strong differences between positive and

negative shocks. We observe a similar behavior when evaluating the preference and dis-

count rate shock. This is an important precondition for our analysis as we want to evaluate

the performance of our approach in a highly nonlinear environment.

II.4 Heterogeneous agent version

Solution approach This subsection presents the solution to the heterogeneous agent

model following the methodology of Krusell and Smith (1997) and Krusell and Smith

(1998).17 In the consumption-savings problem, households require a prediction of next

period’s capital given today’s state space. With heterogeneous agents, this would typically

require households to track the entire distribution of households over the state space, Θt

as an additional state variable, which renders the problem numerically intractable. To ad-

dress this, Krusell and Smith demonstrate that households do not need to keep track of the

17 The code is available at https://github.com/Fabio-Stohler/KS1998.
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full distribution Θt, but a few moments of the distribution suffice to forecast future capital.

Specifically, they approximate the law of motion for capital using its mean, allowing house-

holds to form expectations based on a simplified perceived law of motion. Let A⃗, ζ⃗, and

δ⃗ denote the discretized grid of aggregate productivity, discount factor, and depreciation

shock with NA, Nζ , and Nδ shocks. We generalize on the original paper and assume that

the law of motion takes the following state-dependent functional form:

lnKt+1 = β0 +

NA∑
i=1

βA,i 1{At=Ai} +

Nζ∑
j=1

βζ,j 1{ζt=ζj} +

Nδ∑
k=1

βδ,k 1{δt=δk} (116)

+ βK lnKt +

NA∑
i=1

γA,i 1{At=Ai} lnKt +

Nζ∑
j=1

γζ,j 1{ζt=ζj} lnKt +

Nδ∑
k=1

γδ,k 1{δt=δk} lnKt

Our extension allows for an arbitrary many realizations of the discretized shocks and

allows for both the slope and the intercept to vary with each (discretized) aggregate state

value. The solution algorithm consists of an inner and an outer loop. The outer loop

iterates until the coefficients in the regression equation (116) converge. Let

βn =
(
βn
0 ,
{
βn
A,i

}NA

i=1
,
{
βn
ζ,j

}Nζ

j=1
,
{
βn
δ,k

}Nδ

k=1
, βn

K ,
{
γnA,i

}NA

i=1
,
{
γnζ,j
}Nζ

j=1
,
{
γnδ,k
}Nδ

k=1

)′
denote the vector of regression coefficients for the perceived law of motion of iteration n

of the algorithm. Convergence is determined by checking whether the coefficients remain

unchanged across iterations. If the coefficients changed by less then a small ϵ, the algorithm

terminates.18

The inner loop iterates until the household problem is globally solved for a given per-

ceived law of motion for capital. To solve the household side, we discretize the space

(kit, hit, Kt, At, ζt, δt) and use the endogenous grid-point method (EGM) of Carroll (2006)

to solve the household problem given the stochastic processes and the perceived law of

motion. Household policies are updated iteratively until the (inverse) marginal values

of consumption converge. Once the household problem is solved globally, we aggregate

and simulate the economy for T periods using the stochastic simulation method of Young

(2010). Finally, using the simulated time series of capital and the aggregate states, we

estimate the regression equation (116) to update the law of motion.

We illustrate the algorithm as follows. Let k⃗, h⃗, denote the discretized vectors of indi-

vidual capital holdings, individual productivity, respectively.

18 We also verify that the true law of motion for capital closely matches the perceived law of motion, which
is generally the case.
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1. For each realization of aggregate states {Kt, At, ζt, δt} compute labor Lt (which de-

pends on the aggregate state), as well as the interest rate rt and the wage rate wt as

the marginal products of capital and labor. For each realization of the individual state

space {kit, hit, Kt, At, ζt, δt} compute household incomes.

2. Initialize the coefficients for the law of motion (116). Typically, the intercepts (β0, β1,

β2, β3) are set to zero, and the slopes (β4, β5, β6, β7) to one.

3. Given the coefficients for the law of motion, solve the household problem using

EGM19:

(a) Initialize guesses for the policy functions c0it, k
0
it defined on the state space

(kit, hit, Kt, At, ζt, δt). Create an initial guess for the marginal value function
∂V 0

it

∂kit
= (1 + r)

∂u(c0it)

∂cit
. The superscript denotes the iteration step mm of the EGM

algorithm.

(b) For each realization of the aggregate state today {Kt, At, ζt, δt} forecast next

period’s capital stock using the perceived law of motion. Let K̃t+1 denote the

forecasted capital stock according to the perceived law of motion. Interpolate

the marginal value ∂V n−1
it

∂kit
from the exogenous grid K⃗ onto the perceived value

in the next period K̃t+1. Finally, compute the expected marginal value by inte-

grating over the realizations of the aggregate {At, ζt, δt} and idiosyncratic states

{hit} and discount the expected value with the discount factor.20

(c) Apply the inverse of the marginal utility function to the interpolated expected

marginal value to find the policy function of consumption ĉit on the endogenous

grid k̃it.

(d) Compute the endogenous grid points k̃it from the budget constraint given the

policy ĉit.

(e) Interpolate the consumption policy function ĉit from the endogenous grid k̃it

onto the exogenous grid k⃗ to obtain an updated policy function cmit .

(f) Enforce the borrowing constraint.

(g) Check convergence by verifying for a small ϵ, whether the condition |u′−1
(

∂V m
it

∂kit

)
−

u′−1
(

∂V m−1
it

∂kit

)
| < ϵ is true. | · | denotes the Euclidean norm. If the condition is

not satisfied, repeat steps (b)–(g).
19 There exist numerous resources that go into detail in the illustration of the method. We only highlight the

differences that occur due to the presence of aggregate risk. The interested reader might consult Carroll
(2006), Barillas and Fernández-Villaverde (2007), Hintermaier and Koeniger (2010), and the appendix of
Bayer et al. (2019).

20 Note that the idiosyncratic risk depends on the realization of the aggregate risk.
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4. With the converged global policy functions, we aggregate and simulate the economy

using stochastic simulation of Young (2010) for T periods:

(a) We set the initial capital stock to the value from the deterministic steady state of

a representative agent economy and denote the capital stock as K1.21

(b) In period t, we have capital stock Kt, which is generally off-grid. To evaluate the

policy functions of the household, we evaluate the individual policy function at

Kt by interpolating from the exogenous grid K⃗ on the current capital stock Kt.

Evaluate the policy functions at the current aggregate state {At, ζt, δt}.

(c) Given household policies evaluated at the state realizations today, we update the

household distribution using the stochastic simulation method of Young (2010).

(d) Repeat steps (b) and (c) for T periods.

5. Discard the first 1000 periods as a burn-in sample. Use the remaining time series to

update the perceived law of motion by regressing the logarithm of the capital stock

on the aggregate states and the lagged logarithm of the capital stock as in equation

(116). Denote the resulting regression coefficients as β̃
m

6. Check whether |β̃n − βn−1| < ϵ for a small ϵ. If the condition is met, stop; otherwise,

update the coefficients as βn = φβ̃
n
+ (1− φ)βn−1 with φ ∈ (0, 0.5) and repeat steps

(3) - (6).

Note that the description above accounts for all aggregate shocks but also accommodates

cases with fewer aggregate shocks by keeping some of them fixed. We apply steps (1) to

(6) to each satellite model, generating a dataset that is then used to train the surrogate

model.

Calibration Table 4 reports the parameter values used to solve the satellite models and

simulate the corresponding data. For household and firm behavior, we adopt the param-

eterization from Krusell and Smith (1998), calibrated at an annual frequency. The exoge-

nous shock processes are also specified using standard annual values commonly found in

the literature.

Moreover, figure 9 illustrates the perceived law of motion of the households in com-

parison to the true law of motion for capital in the economy. As the plot illustrates, the

perceived law of motion and the true law of motion closely align, with the error between

the two lines generally being below one percent of the capital stock.

21 We also find a distribution that has the mean of K1 and initialize the simulation with this distribution.
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Table 4 Parameter values of heterogenous agent model

Parameter Value Description Parameter Value Description

Households Exogenous processes
β 0.95 Discount factor ρh 0.9 Idiosy. risk persistence
σ 1.0 Risk aversion σh 0.15 Idiosy. risk std.

A 1 Steady State TFP
Firms ρa 0.75 TFP persistence
α 0.36 Capital share σa 0.02 TFP std.
δ 0.1 Steady State depreciation ζ 1 Steady State Discount fact.

ρζ 0.75 Discount fact. persistence
Government σζ 0.02 Discount Fact. std.
τL 0.0% Labor tax rate level σδ 0.01 Depreciation std.
τR 0.0% Capital tax rate level
τC 0.0% VAT rate level

NOTE - All parameters in the table are calibrated to a yearly frequency.

Figure 9 Model implied series of capital and perceived aggregate law of motion (ALM)

(a) Model with TFP and zeta shocks (b) Model with TFP and delta shocks

(c) Model with zeta and delta shocks (d) Model with TFP, zeta, and delta shocks
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