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nomic aggregates, inequality, household portfolios, and asset premia. To address this

question, I estimate a heterogeneous-agent model with incomplete markets, portfo-

lio choice, and nonfundamental asset price shocks using a Bayesian approach in the

sequence space. Although nonfundamental asset price shocks have limited effects

on aggregate variables and standard inequality measures, they affect households

heterogeneously across the wealth distribution. As a result, up to 47 percent of the

observed equity premium is explained by the compensation demanded by house-

holds exposed to nonfundamental asset price risk. Together with standard business
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with the empirical magnitude of equity and term premia.
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1 Introduction

Asset prices display substantial volatility, reflecting not only fluctuations in economic

fundamentals but also variation in expected returns.1 A prominent strand of the fi-

nance literature attributes this excess volatility to nonfundamental asset price move-

ments driven by shifts in investor beliefs. These shifts may arise because traders form

expectations under bounded rationality, because of misperceptions,2 or because they

operate with incomplete or dispersed information.3 While recent research has begun

to explore the macroeconomic implications of such nonfundamental fluctuations4, their

role in shaping household portfolios and driving risk premia is insufficiently understood.

This paper contributes to filling this gap by developing a quantitative heterogeneous-

agent New Keynesian model with portfolio choice and nonfundamental asset price shocks

in a segmented equity market. The model features a standard New Keynesian supply

side, where firms and unions set prices and wages under monopolistic competition and

nominal rigidities. Households face idiosyncratic income risk and have access only to

incomplete markets. To insure against aggregate shocks, they invest in bonds of varying

maturities, physical capital, and an equity fund, and demand risk premia as compensa-

tion for holding this portfolio. Individual equities, by contrast, are traded in a segmented

financial market, where noise traders induce asset price volatility through demand based

on fluctuating expectations about future returns or price changes. I estimate the model

using Bayesian methods on macroeconomic and financial time-series data, allowing me

to quantify how nonfundamental shocks affect aggregate variables, the wealth and in-

come distribution, and households along the distribution.

I find that nonfundamental asset price shocks are empirically important not only for

explaining asset price volatility as by construction, but also for shaping the level of asset

premia. At the same time, their effects on macroeconomic aggregates and inequality are

1 I follow Cochrane (2011) and use ”expected returns”, ”discount rates”, and ”risk premia” as synonyms.
See Cochrane (2011) and Shiller (2014) for literature reviews on the importance of expected returns
for explaining asset price fluctuations.

2 Seminal papers that feature non-rational noise-traders are Kyle (1985), De Long et al. (1990), and
Campbell and Kyle (1993). More recent applications of noise traders in exchange rate markets are by
Gabaix and Maggiori (2015), Itskhoki and Mukhin (2021), Fukui, Nakamura and Steinsson (2023),
and Itskhoki and Mukhin (2025), among others.

3 Seminal contributions are Futia (1981) and Singleton (1986), but the idea of goes back to the statement
of Keynes (1936) that asset markets behave like beauty contests. More recent applications to financial
markets and exchange rates include Allen, Morris and Shin (2006), Bacchetta and Wincoop (2006),
Rondina and Walker (2021), Caines and Winkler (2021), Angeletos and Huo (2021), and Angeletos,
Lorenzoni and Pavan (2023), among others. See Angeletos and Lian (2016) for a review.

4 Martin and Ventura (2012) and Miao and Wang (2018) study the impact of nonfundamental asset price
fluctuations on investment, Gali (2014), Caballero and Simsek (2020), and Gali (2021) on consump-
tion.
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significant but modest. Among aggregate variables, the shock contributes most to the

forecast error variance of consumption and investment, accounting for 9 and 12 percent

of their total variance, respectively. Technology shocks still explain the bulk of invest-

ment, consumption, and output fluctuations. In terms of distributional consequences,

the shock raises the value of wealth for households at the top of the distribution in re-

sponse to positive fluctuations, thereby increasing inequality. Quantitatively, however,

this effect is small: nonfundamental asset price shocks account for only 7 percent of the

variance in the Gini coefficient of wealth.

The model not only replicates the volatility of aggregate variables but also gener-

ates sizable financial market premia, both for holding long-term bonds and for equity.

Nonfundamental fluctuations in equity prices play a key role in this result. By construc-

tion, nonfundamental shocks account for all excess volatility in empirical returns, to

which the model is estimated. Through the lens of the model, roughly two thirds of re-

turn volatility is attributed to nonfundamental sources. Given incomplete markets and

heterogeneous household exposures, even moderately risk-averse households demand

substantial compensation for bearing both fundamental and nonfundamental risks. The

model produces an equity premium of 3.9 percent, which is somewhat below empiri-

cal estimates but remains broadly consistent with them. Approximately 47 percent of

this premium arises from exposure to nonfundamental asset price risk. Although equity

holders are typically well-insured due to high savings, they demand compensation for

the substantial fluctuations induced by nonfundamental asset price risk.

I also show that the model accounts for roughly half of the observed term premia on

bonds. Importantly, the model’s ability to generate both equity and term premia disap-

pears when the assumption of incomplete markets is removed. This highlights that a

largely standard heterogeneous-agent business cycle framework is not only well suited

to capturing aggregate dynamics and inequality, but also capable of reproducing key fea-

tures of financial markets, such as risk premia. Nonfundamental asset price fluctuations

play a crucial role in achieving this result.

The model builds on the one-asset framework of Auclert, Rognlie and Straub (2025),

which I extend to incorporate household portfolio choice following Auclert et al. (2024).

I embed this household block into the quantitative macroeconomic environment of

Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2007), and intro-

duce a segmented equity market featuring nonfundamental asset price shocks in the

spirit of De Long et al. (1990), where noise traders drive deviations from fundamental

values.5

5 In addition to microfounding nonfundamental asset price fluctuations through noise traders, I derive al-
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Financial markets are segmented because households do not directly trade individual

stocks. Instead, they invest only in a stock market index. Asset prices arise from the

interaction of three agents: rational traders, noise traders, and an index fund. Rational

traders price equities based on fundamentals, while noise traders generate unpredictable

shifts in demand, leading to deviations from the present discounted value of expected

future dividends. The index fund aggregates stocks into a diversified portfolio and sells

shares of it to households, thereby exposing them indirectly to aggregate asset price

fluctuations driven by noise. Households face uninsurable idiosyncratic income risk

and self-insure by choosing from a portfolio of eight assets: equity, physical capital,

and government bonds of six different maturities. For each structural shock, I compute

the premia households require for holding each asset, allowing me to quantify average

asset premia and decompose them by risk source. On the production side, the model

features standard New Keynesian frictions. Retail firms differentiate wholesale goods

and set prices subject to nominal rigidities and partial inflation indexation. Wholesale

firms accumulate capital under adjustment costs, while unions set wages under Calvo-

style stickiness, also with partial indexation. The government finances its expenditures

through taxes and by issuing bonds of varying maturities. Monetary policy follows a

standard Taylor rule aimed at stabilizing inflation and output.

To clarify the intuition behind the key findings, consider first the role of the nonfunda-

mental asset price shock. By construction, this shock captures all fluctuations in equity

prices that are not driven by economic fundamentals. It is therefore unsurprising that

it accounts for a substantial share of equity price volatility in the model. Why, then, do

such shocks generate only limited aggregate fluctuations? Three mechanisms are cen-

tral. First, equity comprises only about one fifth of total household assets. As a result,

even large movements in equity prices induce relatively modest changes in aggregate

household wealth. Second, the aggregate marginal propensity to consume (MPC) out of

total wealth is low, as high-wealth low-MPC households hold most of the wealth. As a

result, fluctuations in asset values translate only weakly into changes in aggregate con-

sumption. Third, the variance of the nonfundamental asset price shock is significantly

smaller than that of the main business cycle shocks, such as total factor productivity

(TFP) and investment-specific technology. Together, these factors imply that although

nonfundamental shocks drive asset price volatility, they have muted effects on macroe-

conomic aggregates such as consumption and output.

A similar logic applies to their limited role in explaining wealth inequality. While

ternative formulations based on incomplete information, which yield an identical reduced-form pricing
equation.
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nonfundamental asset price shocks primarily affect wealthier households—who hold

disproportionate shares of risky assets—their overall impact on the wealth distribu-

tion remains small. This is because the primary sources of redistribution in the model

stem from shocks with broader macroeconomic consequences, such as TFP, investment-

specific technology, and government expenditure shocks. As a result, nonfundamental

shocks have limited power in shaping inequality dynamics relative to other sources of

economic risk.

While nonfundamental asset price shocks have limited effects on aggregate variables,

they play a central role in shaping asset risk premia. The computation of these premia

follows the approach of Auclert et al. (2024), which adapts standard consumption-based

asset pricing theory to linearized heterogeneous-agent economies. In this framework,

assets that comove positively with the intertemporal marginal rate of substitution must

offer higher expected returns to compensate for the risk they impose. This mechanism

is particularly relevant for equity holders exposed to nonfundamental asset price risk.

Such shocks generate large and persistent fluctuations in asset returns that dispropor-

tionately affect wealthy households, who hold the majority of equity. Although these

households have low marginal propensities to consume out of wealth, the magnitude of

return fluctuations leads to elevated consumption volatility—substantially higher than

that of the aggregate. As a result, equity holders demand a premium for bearing this

risk.

This paper contributes to four strands of the literature. First, it relates to the work

that decomposes asset premia through the lens of estimated macroeconomic models.

The seminal contribution by Bansal and Yaron (2004) introduces long-run risk into as-

set pricing and shows that it helps replicate observed equity premia. Hansen, Heaton

and Li (2008) extend this idea by estimating a structural model with long-run risk and

evaluating its ability to match asset price behavior. Rudebusch and Swanson (2012)

similarly use an estimated macro-finance model to highlight the role of long-run risk in

explaining term premia. Closely related, Schorfheide, Song and Yaron (2018) estimate

a DSGE model with Epstein-Zin preferences and decompose the equity premium into

short- and long-run risk components, as well as a time-varying risk premium arising

from changes in volatility. While these studies provide valuable decompositions, they

primarily distinguish risk by its persistence—short-run versus long-run—rather than by

its structural economic source. This paper goes one step further by decomposing the

equity premium into contributions from specific macroeconomic shocks, such as produc-

tivity, fiscal policy, and nonfundamental asset price fluctuations. In doing so, it provides

a more granular understanding of the economic drivers behind risk premia. Moreover,
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the model offers a microfoundation for time-varying risk premia, as households’ expo-

sure to macroeconomic shocks endogenously determines the compensation they require

in equilibrium.

Second, it contributes to the large body of work studying how heterogeneity shapes

our understanding of business cycle drivers. Numerous papers have examined the re-

sponses of heterogeneous-agent models to monetary6 and fiscal7 policy.

By contrast, relatively few contributions study the role of asset price fluctuations in

heterogeneous-agent settings. J. Fernández-Villaverde and Levintal (2024) examine the

response of a heterogeneous-agent economy to the disaster shock introduced by Barro

(2006), but they do not incorporate demand-side determinacy, so the response reflects

only the partial-equilibrium reaction of households to changes in returns. Angeletos and

Calvet (2006) analytically derive an equilibrium with heterogeneous agents and fluctu-

ating future returns under CARA preferences, but they abstract from Keynesian frictions

and do not study heterogeneity in household responses. The present paper differs from

these approaches by examining how asset price fluctuations affect a heterogeneous-

agent economy with Keynesian frictions, allowing general equilibrium forces, particu-

larly shifts in wages and interest rates, to shape the household-level response. Closest

to my approach is Auclert et al. (2024), whose methodology I adopt. However, I extend

their framework by allowing for nine distinct assets instead of two and embedding the

household block into a fully-specified quantitative macroeconomic environment. My es-

timation results show that, when applied in this richer setting, their methodology can

generate sizable equity premia, contrary to the findings in their tractable HANK model.

Third, this paper relates to the large literature on asset price bubbles. While early

work focuses on the theoretical possibility of bubbles,8 more recent research explores the

implications of bubbles for investment dynamics9 as well as fiscal and monetary policy.10

The present paper differs by focusing on how asset price fluctuations affect consump-

tion rather than investment. Moreover, while most of the existing literature emphasizes

the supply-side effects of bubbles, particularly their role in relaxing binding financial

6 Among others, see McKay, Nakamura and Steinsson (2016), Kaplan, Moll and Violante (2018), Au-
clert (2019), Bayer et al. (2019), Acharya and Dogra (2020), Bilbiie (2020), McKay and Wieland
(2021), Luetticke (2021), Kekre and Lenel (2022), Acharya, Challe and Dogra (2023), Bayer, Born and
Luetticke (2024), and Auclert, Rognlie and Straub (2024a). See McKay and Wolf (2023) for a summary.

7 Among others, see Kaplan and Violante (2014), McKay and Reis (2016), Bayer, Born and Luetticke
(2022), Auclert, Bardóczy and Rognlie (2023), and Angeletos, Lian and Wolf (2024).

8 See Samuelson (1958), Tirole (1985), Abel et al. (1989), and Santos and Woodford (1997).
9 See Farhi and Tirole (2011), Martin and Ventura (2012), Miao, Wang and Xu (2015), Miao and Wang

(2018), Larin (2020), and Guerron-Quintana, Hirano and Jinnai (2023).
10 See Diamond (1965), Domeij and Ellingsen (2018), and Angeletos, Collard and Dellas (2023) for fiscal

policy, and Kiyotaki and Moore (2019), Asriyan et al. (2020), and Angeletos, Lorenzoni and Pavan
(2023) for monetary policy.
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frictions, this paper emphasizes demand-side transmission channels. Within the bubble

literature, Gali (2014) and Gali (2021) are closest in terms of transmission mechanisms.

In their overlapping-generations model, asset price bubbles affect household wealth and

thus consumption, which in turn drives aggregate demand. However, Gali (2021) fea-

tures only stylized heterogeneity via the perpetual youth structure of Yaari (1965) and

Blanchard (1985). In contrast, the present paper allows for rich household heterogene-

ity and therefore provides a more granular assessment of distributional and aggregate

effects. Loosely related is also the contribution of Caballero and Simsek (2020), who

introduce volatility shocks to asset returns in a New Keynesian model with households

holding heterogeneous beliefs. While their model includes New Keynesian frictions, it

features only limited heterogeneity, distinguishing just two household types.

Finally, this paper relates to the empirical literature on how asset price fluctuations

affect the macroeconomy. Typically, the impact of economic shocks is analyzed empir-

ically. However, because asset prices and real activity are jointly determined, and only

few empirical studies examine how asset price changes affect the distribution of house-

holds,11 we adopt a model-based approach instead. Chodorow-Reich, Nenov and Simsek

(2021) provides some of the most recent evidence on the aggregate effects of asset price

fluctuations. In response to a 20% national increase in stock market valuations, they

document a 1.7% increase in local labor supply after two years. Our model-based ap-

proach also allows us to study the distributional and welfare consequences of asset price

fluctuations. This links our work to studies such as Kuhn, Schularick and Steins (2020)

and Cioffi (2021), which examine how asset prices affect the income and wealth distri-

bution, as well as Fagereng et al. (2025), who investigates the welfare implications of

asset price changes.

The remainder of the paper is organized as follows: Section 2 presents the model,

Section 3 discusses the calibration and the Bayesian estimation of the model. Section 4

illustrates the quantitative effect of an asset price shock in the economy and decomposes

the equity premium. Finally, section 5 concludes.

2 HANK Model with Nonfundamental Asset Price Shocks

This section presents a heterogeneous-agent New Keynesian (HANK) model that incor-

porates household portfolio choice, segmented financial markets, and nonfundamental

asset price fluctuations. Households choose between equity, capital, and government

bonds of varying maturities to self-insure against idiosyncratic income risk and to hedge

11 Chodorow-Reich, Nenov and Simsek (2021) reviews some of these contributions.
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exposure to aggregate shocks. Risk premia arise endogenously as households demand

premia in compensation for utility fluctuations induced by macroeconomic risk. The

financial sector features a segmented equity market for individual equities as house-

holds can only trade in an equity fund. Fundamental traders interact with noise traders

such that equilibrium asset prices feature fluctuations unrelated to fundamentals. These

nonfundamental fluctuations are transmitted to households indirectly through an index

fund that intermediates between traders and household investors. The model embeds

this financial structure into a quantitative general equilibrium framework with stan-

dard New Keynesian frictions in pricing, capital adjustment, and wage setting, following

Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2007). The govern-

ment issues bonds of different maturities and conducts fiscal policy through taxes and

spending, while monetary policy follows a standard Taylor rule.

2.1 Nonfundamental Asset Price Shocks in the Equity Market

The equity market model12 builds on De Long et al. (1990) and Gabaix and Maggiori

(2015). The market is segmented in the sense that households do not trade individual

equities directly, but instead invest exclusively in an equity index fund. Three types of

agents operate in the equity market: fundamental traders, noise traders, and an equity

fund that intermediates between them and households. I assume a unit continuum of

traders indexed by l ∈ [0, 1], of which a measure ν are fundamental traders (l ∈ [0, ν])

and a measure 1 − ν are noise traders (l ∈ (ν, 1]). All traders live for two periods: they

purchase a portfolio of assets in the first period and earn returns in the second. Since

traders are owned by the equity fund, they finance their purchases with revenues col-

lected from household investments and return profits to the fund, which are ultimately

passed on to households. Both types of traders trade a continuum of individual equities

indexed by j ∈ [0, 1], each issued by a retail firm. Individual equity prices are determined

in equilibrium through market clearing. The index fund aggregates these equities into a

diversified portfolio and sells shares of the fund to households.

Fundamental Traders: Each fundamental trader is risk-neutral13, derives utility from

the profits of their equity portfolio, discounts the future at the risk-free rate 1+ rt+1, and

incurs quadratic disutility from monitoring firm-specific fundamentals, which increases

12 In Appendix I, I derive an alternative formulation based on incomplete information that yields the same
reduced-form equilibrium asset price.

13 I can also integrate limits to arbitrage by assuming that fundamental traders are risk averse according
to a CARA utility function as in De Long et al. (1990), or Bacchetta and Wincoop (2006).
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with the size of the trader’s net position. Each fundamental trader l ∈ [0, ν] chooses a

portfolio allocation {θljt}j∈[0,1] to maximize utility Ult:

Ult = max
{θljt}

∫ 1

0

[

−qjtθljt + Et

(
djt+1 + qjt+1

1 + rt+1

)

θljt −
1

2
θ2ljt

]

dj,

where djt and qjt denote the dividend and price of equity j, respectively. The functional

form yields a linear demand schedule for each equity:

θljt = −qjt + Et

[
djt+1 + qjt+1

1 + rt+1

]

∀ l ∈ [0, ν]. (1)

Noise Traders: Noise traders represent the second group of market participants. Un-

like fundamental traders, their investment behavior is unrelated to economic funda-

mentals. This may reflect behavioral motives or non-rational stock-picking strategies.

Specifically, the demand of each noise trader for stock j is given by:

θljt = ξ̃t + ϵθljt,

where ξ̃t is an aggregate noise-trader demand component and ϵθljt is an idiosyncratic, iid

shock to the noise trader–stock j demand.

Equity Fund: The equity fund intermediates between households and traders. It fi-

nances trader purchases using household contributions, collects dividend and capital

gains from traders’ equity holdings, and distributes the resulting returns back to house-

holds. The fund aggregates all equities into a single index, which households can invest

in. The price of the index fund equals the average price of the underlying equities and

pays the average of the underlying dividends:

qt =

∫ 1

0

qjtdj, dt =

∫ 1

0

djtdj.

Equilibrium Asset Prices: In equilibrium, the aggregate demand for each equity must

equal its supply (normalized to one), implying:
∫ 1

0
θljtdl = 1. In Appendix I I illustrate

that this market-clearing condition implies that the price of equity j is:

qjt = Et

[
djt+1 + qjt+1

1 + rt+1

]

+ ξt, (2)
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where the effective asset price shock is defined as ξt ≡
(1−ν)ξ̃t−1

ν
, and follows an AR(1)

process ξt = ρqξt−1 + ϵqt where ϵqt ∼ N (0, σ2
q ). This formulation makes the role of non-

fundamental fluctuations explicit and facilitates their estimation. In a symmetric equi-

librium where all equities are identical,14 the aggregate index fund price is:

qt = Et

[
dt+1 + qt+1

1 + rt+1

]

+ ξt. (3)

Hence, noise trader demand shifts the entire equity price level upward, increasing the

valuation of the market even when fundamentals remain unchanged.

2.2 Household Sector with Portfolio Choice and Asset Pricing

The household side of the model combines a standard consumption–savings problem

under idiosyncratic income risk with portfolio choice to hedge against aggregate fluc-

tuations. Households earn net labor income, accumulate assets to self-insure against

idiosyncratic shocks, and allocate their portfolios across available assets to mitigate ex-

posure to aggregate risk.

Idiosyncratic Risk: There is a continuum of households indexed by i ∈ [0, 1], which are

ex-ante identical, but differ ex-post due to uninsurable idiosyncratic risk in their labor

efficiency eit and their discount factor β̃it. A Markov Chain describes the transitions

between a state (e, β̃) and any other state (e′, β̃′), and the mass of agents in each state

is assumed always to equal the mass in the stationary distribution. We assume that the

labor productivity and discount factor processes are independent, and normalize the

cross-sectional mean of labor productivity to unity.

Household problem: Households can save in K+1 assets, subject to a zero-borrowing

constraint on their total portfolio wealth, and earn labor income, which is taxed at a rate

τt. Households have Epstein-Zin preferences over their felicity from consumption cit and

labor nit. 1/ρ denotes the intertemporal elasticity of substition and γ denote the risk-

aversion parameter of households. Households have King, Plosser and Rebelo (1988)

utility and obtain utility from consumption, but dislike supplying labor nit, where v(·)

quantifies their disutility. The problem of household i in period t, with idiosyncratic

income productivity eit, idiosyncratic discount factor βit, and with portfolio holdings

14 I assume that all retail firms are symmetric. As a result, their equities have identical payoffs, which
implies by equation (2) that equity prices are also identical. Thus, all equities are identical.
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{akit}
K
k=0, where akit denotes their portfolio holding of asset k ∈ [0, 1, ..., K] is given by:

Vit = max
{cit, nit, {a

k
it}

K
k=0

}∞t=0

(

βit

(
cite

−v(nit)
)1−ρ

+ (1− βit)
(
Et

[
V 1−γ
it+1

]) 1−ρ

1−γ

) 1

1−ρ

(4)

s.t. cit +
K∑

k=0

qkt a
k
it ≤

K∑

k=0

(

qkt + xk
t

)

akit−1 + eit(1− τt)wtnit, (5)

and

K∑

k=0

qkt a
k
it ≥ 0. (6)

The household’s time-varying discount factor is defined as βit ≡ β̃itζt, where β̃it is the

idiosyncratic component, and ζt is an aggregate discount factor shock. The aggregate

component ζt evolves according to a log-linear AR(1) process with persistence ρζ and

innovation ϵζ ∼ N (0, σ2
ζ ). In the household budget constraint (5), qkt and xk

t denote

the price and payoff of asset k, respectively. Households allocate wealth across a menu

of nine assets: equity, capital, and government bonds with seven different maturities.

The pre-tax real wage per unit of efficient labor is denoted by wt; however, individual

households do not choose their own hours worked; instead, labor supply is determined

collectively by unions in response to current labor demand.

Solving for Optimal Portfolios and Risk Premia: I solve the model using the sequence-

space approach of Auclert et al. (2021), modeling aggregate shocks as first-order ”MIT

shocks”: the economy is perturbed by unanticipated shocks at date t = 0, after which

all future periods evolve under perfect foresight. In this deterministic environment, all

assets yield equal expected returns from period t > 0 onward, rendering households

locally indifferent across assets and leaving portfolio choice indeterminate. However, at

t = 0, realized shocks induce variation in ex-post returns, making the portfolio problem

well-defined. Auclert et al. (2024) develop a method to recover optimal portfolio alloca-

tions and associated risk premia in this setting. A full derivation of the implementation

in my model is provided in Appendix II; here, I offer a brief overview of the intuition

and key equations.

The core idea is that households, anticipating the economy’s response to aggregate

shocks, can compute how their marginal utility will adjust—i.e., their exposure to each

shock. They also foresee how asset returns will change in period 0. Given this infor-

mation, households choose portfolios in period −1 to hedge against undesirable utility

fluctuations. By imposing market clearing across all assets, the method jointly deter-

mines the equilibrium exposure to aggregate risk and the corresponding risk premia

11



that compensate households for bearing this risk.

Formally, let ϵ denote a vector of Z aggregate shocks, and let households choose asset

holdings aki across K + 1 assets with prices pk and state-dependent payoffs xk(ϵ). Given

an expected15 value function Wi = Et

[
V 1−γ
it

] 1

1−γ , and assuming no binding portfolio

constraints, the optimal portfolio satisfies the perturbed Euler equation:

E

[
xk(ϵ)

pk
W ′

i (ϵ)

γi

]

= 1, (7)

where γi is the Lagrange multiplier associated with household i’s budget constraint.

Portfolio Choice: To derive implications for portfolio choice, Auclert et al. (2024)

take a second-order derivative of equation (7) with respect to the volatility of aggregate

shocks. This leads to a second-order Euler condition that relates the exposure of marginal

utility to shocks to the relative return sensitivity of assets. Define household i’s marginal

utility exposure to shock z as λi,z ≡
d logW ′

i

dϵz
, and define the relative sensitivity of asset

k (in excess of a numéraire asset 0) as Xzk ≡ ∂ log xk

∂ϵz
− ∂ log x0

∂ϵz
. Then the key optimality

condition becomes:

X
⊤
Σλi = b, (8)

where λi is a Z × 1 vector of household i’s marginal utility exposures, X is a Z × K

matrix of relative return sensitivities, Σ is the diagonal matrix of shock variances, and b

is a K × 1 vector of relative risk premia. Equation (8) states that households optimally

choose portfolios to hedge their marginal utility exposure, equating it to the price of risk

encoded in b.

If there are sufficiently many linearly independent assets (K ≥ Z and X
⊤
Σ is invert-

ible) then markets are complete with respect to aggregate risk. In this case, equation (8)

uniquely determines a vector λ such that all households share the same marginal utility

exposure to each shock:
d logW ′

i

dϵz
= λz ∀i. (9)

Under complete markets, equation (9) characterizes the portfolio holdings required for

optimal risk-sharing. By imposing market clearing on individual portfolio demands as

given in equation (8), I solve for the common marginal utility exposure λz, which in

turn determines the optimal portfolio allocations for each household. In my baseline

specification, I do not impose portfolio constraints, allowing households to fully insure

15 Expectations are taken over idiosyncratic fluctuations, as well as over aggregate dynamics conditional
on an aggregate shock realization.
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against aggregate risk. As a result, this setup may overstate the degree of insurance and

understate the required compensation for risk. This implies that the model’s implied risk

premia represent a lower bound.16

Risk-Premia: This framework also provides a closed-form approximation for average

risk premia in the economy.17 For any asset k, its premium over the reference asset 0 is

approximately:

Rk(σ)−R0(σ)

R
≈ −

Z∑

z=1

Xzkλzσ
2
zσ

2, (10)

where Xzk captures how asset k responds to shock z, and λz captures the average expo-

sure to that shock. This decomposition highlights the standard consumption-based asset

pricing logic: risk premia arise when assets co-move with the marginal value function. As-

sets that pay off in states where the marginal value is high must offer higher expected

returns as compensation. As the risk premium is additive seperable in shocks, we can

calculate the contribution of an individual shock Z to the total premium of an asset k,

as well:

Ωk,Z =
XZkλzσ

2
Z

∑Z
z=1 Xzkλzσ

2
z

(11)

The method thus provides a tractable and powerful way to compute endogenous

portfolio allocations and risk premia in heterogeneous-agent models using only first-

order impulse responses and static model primitives, without the need to solve the full

second-order model.

2.3 New Keynesian Firm Sector

We assume a three-tier production structure with a representative wholesale producer,

a continuum of retailers, and a final goods producer. The wholesale producer creates

a homogeneous wholesale good that is differentiated by retailers into a specific variety.

The final goods producer bundles differentiated varieties into the final good. The whole-

16 Auclert et al. (2024) show how to compute constrained-optimal portfolios in the case of two assets.
Extending this to models with more assets, such as the nine-asset setup considered here, is more chal-
lenging. They note, however, that imposing portfolio constraints tends to push results toward those
implied by exogenous portfolio rules (e.g., constant shares), typically increasing the level of risk premia
while reducing the extent of endogenous insurance. Importantly, they find that portfolio constraints
have limited implications for aggregate dynamics. Consequently, my estimates for risk premia are likely
lower bounds, as imposing portfolio restrictions would increase them.

17 Asset premia depend on the stochastic structure of the economy, which is time-invariant under a first-
order solution. This implies that I can only evaluate the average premia over the estimated periods. In
a counterfactual exercises, I reestimate the model for three different periods to study how changes in
the volatility and persistence of shocks alter premia.
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sale firm accumulates capital subject to investment adjustment costs, while retailers set

the prices of their product subject to a Calvo (1983) adjustment friction.

Final goods firm: The final goods firm bundles all j varieties using a Dixit-Stiglitz

aggregator

Yt =

(∫ 1

0

Y
1

µ
p
t

jt dj

)µp
t

(12)

with elasticity of substitution between varieties of µp
t/(µ

p
t − 1) > 1. We assume that

µp
t follows a log-AR(1) process with persistence ρp and shocks ϵpt ∼ N(0, σ2

p) around the

mean of the steady state price markup µp. Cost minimization of the final goods producer

yields demand Yjt for the individual variety j as

Yjt =

(
Pjt

Pt

)−µp
t /(µ

p
t−1)

Yt, (13)

where Pjt is the price of the individual variety j is offered at and Pt =
∫ 1

0

(

P
1

1−µ
p
t

jt dj

)1−µp
t

denotes the aggregate price level.

Retail firms: There exists a unit interval of j monopolistically competitive retail firms.

Each retail firm buys a homogeneous wholesale good from the wholesale firm at the

price mct and costlessly differentiates the good into a variety j, for which the producer

is a monopolist. As a result of monopolistic competition, each retailer generates a profit

which it distributes to equity holders. Each retail firm sets the price for the variety Pjt

subject to a Calvo (1983) adjustment friction with indexation of prices. Retailers that

are unable to re-optimize during the period adjust their price according to the following

indexation rule:

Pjt = Pjt−1Π
ιp
t−1Π

1−ιp , (14)

where Π is the steady state inflation rate, and ιp reflects the degree of indexation to

lagged aggregate inflation Πt−1. For retail firms able to re-optimize, the optimization is

to choose a new reset price P ∗
jt to maximize expected discounted profits until the next

re-optimization, given by

Et

∞∑

s=0

λs
pβ̄

s

(
P ∗
jtΓt,t+s

Pt+s

−mct+s

)

Yjt+s (15)
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subject to demand by the final goods producer (13) and Γt,t+s =
∏s

k=1 Π
ιp
t+s−1Π

1−ιp .

λp denotes the probability not to adjust the price in a given period and β̄ denotes the

average discount factor of households.18 The corresponding first-order condition for

price setting implies a Phillips curve,

log(Πt) =
β̄

1 + β̄ιp
Et log(Πt+1) +

ιp
1 + β̄ιp

log(Πt−1) + κp

(

mct −
1

µp

)

+ µp
t , (16)

where the slope of the Phillips curve is given by κp = 1−λpβ̄

1+ιpβ̄

1−λp

λp
. I assume a symmetric

equilibrium in which aggregate profits in the economy are dt = (1− 1
µt
)Yt. These profits

are distributed to the owners of shares in the retail firms that are traded at the price qt.

Wholesale firm: Wholesale goods are produced by a representative wholesale firm

using labor and capital:

Yt = ZtK
α
t−1N

1−α
t , (17)

where α is the capital share in production, Zt is total factor productivity that follows a

log AR(1) process with persistence ρZ and shocks ϵZt ∼ N(0, σ2
Z), Nt is the labor hired,

and Kt−1 is the capital stock owned by the wholesale firm. Capital accumulates within

the firm subject to investment adjustment costs, so that for each unit invested, a firm

has to pay the adjustment cost.

S

(
It
It−1

)

=
1

2χ

(
It
It−1

− 1

)2

, (18)

where 1/χ is the curvature of the function. Moreover, I allow for shocks to the marginal

productivity of investment Ψt, such that the capital accumulation equation for the whole-

sale firm is

Kt = (1− δ)Kt−1 +Ψt

[

1− S

(
It
It−1

)]

It, (19)

where δ is the depreciation rate of capital. I assume that Ψt follows a log AR(1) process

with persistence ρi and shocks ϵit ∼ N(0, σ2
i ). The wholesale firm is perfectly competitive

and takes the real wholesale price mct and real wage wt as given, selling all output. In

this setting, the wholesale firm entering period t with capital Kt−1 and past investment

18 I need to make an assumption about the discount rate with which firms discount future events. Here, I
follow Auclert, Rognlie and Straub (2025) and choose the average discount factor in the economy. The
average discount factor is the values of the discount factors of households multiplied by the stationary
distribution of the Markov Chain that determines the idiosyncratic fluctuations in βit.
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It−1 chooses the amount of labor Nt, capital Kt, and investment It to maximize its value:

Jt(Kt−1, It−1) = max
Kt,It,Nt

mctF (Kt−1, Nt)− wtNt − It + Et

[
1

1 + rt+1

Jt+1(Kt, It)

]

(20)

subject to the capital accumulation equation (19). 1 + rt is the gross real interest rate

on assets. The optimization problem implies the standard first-order condition for labor

demand wt = (1−α)mctZt

(
Kt−1

Nt

)α

, as well as the expression for Tobin’s Q and the firm’s

investment decision:

Qt = Et

[

1

1 + rt+1

(

(1− δ)Qt+1 + αMCt+1Zt+1

(
Kt

Nt+1

)α−1
)]

(21)

1 = ΨtQt

[

1− S

(
It
It−1

)

− S
′

(
It
It−1

)
It
It−1

]

+ Et

[

Ψt+1Qt+1

1 + rt+1

S
′

(
It+1

It

)(
It+1

It

)2
]

(22)

Unions: Nominal wages are assumed to be sticky. As in Erceg, Henderson and Levin

(2000), unions set nominal wages to maximize agent utility subject to adjustment costs.

I adopt the microfoundations for nominal wage rigidities of staggered pricing as in Calvo

(1983). I assume that the unions that are not able to adjust their price optimally adjust

it following an indexation rule. Finally, I specify the disutility of labor as v(nit) = γ
n
1+ 1

ϕ
it

1+ 1

ϕ

.

I assume that unions allocate all labor hours uniformly across agents, so that nit = Nt.

This leads to the wage Phillips curve:

log(Πw
t ) =

β̄

1 + β̄ιw
Et log(Π

w
t+1) +

ιw
1 + β̄ιw

log(Πw
t−1)

+ κw

(

γN
1

ϕ

t −
(1− τ)wt

∫ 1

0
eitc

−1/σ
it di

µw

)

+ µw
t , (23)

describing the dynamics of log-wage inflation Πw
t as a function of aggregate hours Nt,

aggregate posttax labor income (1 − τ)wt, and the effective consumption aggregator
∫ 1

0
eitc

−1/σ
it di that measures how the consumption distribution affects the wealth effect

on labor supply. µw
t follows a log-AR(1) process with coefficient ρw and shocks ϵwt ∼

N(0, σ2
w).

2.4 Government Sector

The government sector consists out of a fiscal authority and a monetary authority.
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Fiscal Authority: Fiscal policy sets the tax rate τt on dividends and labor, spends Gt

on goods, and issues non-contingent debt Bt, with an average return RF
t−1. Since the

overall tax revenue is τtwtNt, the government budget constraint is given by

Bt = RF
t−1Bt−1 +Gt − τtwtNt (24)

We assume that fiscal policy is specified in terms of plans for government spending Gt

which follows a log-AR(1) process with persistence ρG and shocks ϵGt ∼ N(0, σ2
G) and a

tax rule:
τt
τ ss

=
(τt−1

τ ss

)ρτ
(

Bt

Bt−1

)(1−ρτ )γB
τ
(

Yt

Yt−1

)(1−ρτ )γY
τ

, (25)

where ρτ denotes the persistence of the tax rate, γB
τ denotes the elasticity of the tax rate

to debt growth, and γY
τ denotes the elasticity of the tax rate to output growth. Given a

real interest rate, the tax rule and the government budget constraint imply a process for

bonds Bt.

Bond Maturity Structure: I model government debt instruments with a range of ma-

turities. To incorporate different maturities in a tractable fashion, I follow Bayer, Born

and Luetticke (2022) and assume that along all maturities the bonds are zero-coupon

bonds with geometrical decay.19 The bonds are priced recursively, and their ex-post re-

turns contribute to the weighted average fiscal interest rate RF
t−1 the government has to

pay to households.

Let q
(n)
t denote the price of a government bond at time t with maturity n and R

(n)
t−1

denote the ex-post return of a bond. The price of each bond is set by a no-arbitrage

condition and the ex-post return by definition:

q
(n)
t =

(1− δ(n))q
(n)
t+1 + 1

1 + rt+1

, and R
(n)
t−1 =

(1− δ(n))q
(n)
t + 1

q
(n)
t−1

∀n (26)

δ(n) denotes the maturity-specific retirement rate of the bond and rt is the risk-free real

interest rate. The government pays the weighted average of the ex-post returns RF
t−1

across maturities:

RF
t−1 =

∑

n

ω
(n)
t ·R(n)

t with
∑

n

ω
(n)
t = 1 (27)

19 This assumption makes the price and the ex-post return of long-term bonds more exposed to more
persistent shocks. This feature helps to match the empirical fact that the price of long-run bonds
fluctuate more in response to shocks as either their cash-flows or their discount rates are affected by
the shock.
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where ω
(n)
t denotes the share of government debt issued in maturity n at time t. This

composite rate captures the average cost of servicing outstanding government debt, tak-

ing into account the maturity composition of the debt portfolio.

Monetary Policy: Monetary policy sets the nominal interest rate it, using the following

Taylor rule:

1 + it = (1 + it−1)
ρr(1 + πt)

(1−ρr)ϕπ

(
Yt

Yt−1

)(1−ρr)ϕY

exp(ϵrt ) (28)

where ρr denotes the persistence of the monetary policy rule, ϕπ and ϕY denote the

elasticities of the nominal interest rate to inflation and output growth, and ϵrt ∼ N(0, σ2
r)

is an iid monetary policy innovation. Finally, I define the ex-ante real interest rate as

1 + rt = (1 + it)/(1 + πt+1) according to a Fisher equation.

2.5 Market clearing

In equilibrium, the goods market, the labor market, as well as the asset market, have to

clear:

Yt =

∫

citdi+ It +Gt

∫ 1

0

nitdj = Nt

∫

aitdi = Bt + qt + Jt. (29)

We assume that all firms are symmetric such that Yjt = Yt, djt = dt, wjt = wt, and

djt = dt.

3 Calibration and Estimation of the Model

This section illustrates the calibration of the steady state and the estimation of the model

on U.S. time-series data. First, I calibrate the model to replicate key dimensions of house-

hold heterogeneity, and match time-series averages of aggregate variables. Thereafter,

I illustrate the Bayesian estimation on U.S. time-series data, illustrate the estimation

results and their validity.

3.1 Calibration of the Steady State

Table 1 portrays the parameters used in the calibration. The parameter choices of the

household side largely follows Auclert, Rognlie and Straub (2025). To start with, the

exogenous income process is the discretized permanent-transitory income process of
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Table 1 Calibration Details (Quarterly Frequency)

Parameter Value Description Source / Target

Preferences
σ 1.000 Elasticity of intertemporal sub. Standard value
γ 6.000 Risk aversion Guvenen (2009)
γ 0.787 Disutility from labor Labor normalization
ϕ 1.000 Frisch elasticity of labor Standard value

Idiosyncratic risk
βH 0.996 Discount factor patience Total Assets: 18.0
∆β 0.010 Difference discount factors Aggregate MPC: 0.1
ω 0.635 Fraction of patient households U.S. Lorenz Curve of wealth
ϖ 0.010 Prob. to become impatient Krusell and Smith (1997)

Production
Z 0.501 Steady state productivity Output Normalization
α 0.286 Capital income share Capital-to-Output Ratio: 11.2
δ 0.020 Capital depreciation Standard value
µp 1.020 Price Markup Equity-Price-to-Output Ratio: 4.0
µw 1.000 Wage Markup No transfers in steady state

Government
G 0.200 Government expenditure Expenditure-to-Output-Ratio: 0.2
B 2.800 Government debt Debt-to-Output-Ratio: 2.8
r 0.500 Real interest rate in (%) Postwar annual average
τ 0.305 Tax rate Finances debt and expenditure

Notes: All parameters in the table are calibrated to a quarterly frequency. Probabilities represent the
likelihood within a single quarterly period. Interest rates are reported quarterly.

Kaplan, Moll and Violante (2018), based on their estimates from the Social Security Ad-

ministration data. I assume standard intertemporal elasticities of substitution and labor

supply equal to one and calibrate the disutility from labor γ to normalize labor supply

Nt = 1. Moreover, I set the risk-aversion parameter equal to 6 as in Guvenen (2009).

This parameter value is between the commonly used value of 10 in the finance literature

and the commonly used value of 1 when using CRRA preferences in macro models. I

then calibrate remaining household parameters to ensure asset market clearing, gen-

erate an aggregate marginal propensity to consume (MPC) out of labor income of 0.1,

and match the empirical Lorenz curve of wealth inequality in the U.S.20 To achieve this,

I jointly calibrate βH , the discount factor of patient households; ∆β, the gap between

the discount factors of patient and impatient households; and ω, the stationary share

20 I choose a lower quarterly target MPC than Auclert, Rognlie and Straub (2024b), as recent evidence of
Orchard, Ramey and Wieland (2025) shows that MPC estimates for nondurable consumption are lower
than 0.2 per quarter.
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Figure 1 Fit of wealth inequality and aggregate marginal propensities to consume

(a) Fit of the Lorenz Curve
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Notes: Panel 1a) illustrates the fit of the model-implied Lorenz for household wealth compared to the
Lorenz curve estimated from the SCF in 2019 by Auclert, Rognlie and Straub (2025). Panel 1b)
illustrates the intertemporal marginal propensities to consume (iMPCs) of the model out of labor and
capital income.

of patient households in the population. The probability to change patience ϖ follows

Krusell and Smith (1997) in matching the entry of a new generation to the economy.

Figure 1 (1a) shows the model’s fit to the empirical Lorenz curve from the 2019 Sur-

vey of Consumer Finances (SCF). The model matches the Lorenz curve closely, though

it features less top wealth inequality than the data. Figure 1 (1b) shows the models

aggregate intertemporal marginal propensities to consume (MPCs). While I explicitly

target an impact MPC out of labor income of 0.1, all other MPCs are untargeted. The

model’s intertemporal MPCs align well with empirical estimates from microdata, having

a large inpact and then declining quickly. In addition, the untargetted, model-implied

MPC out of capital income is 0.01. This calibration is at the lower end of the empirical

range of 0 to 0.05 estimated by Chodorow-Reich, Nenov and Simsek (2021).

I set TFP Zt so that output is normalized to one and α so as to target a quarterly

capital-to-output ratio of 11.2 with a standard depreciation rate of δ = 0.02. The markup

µp is chosen to generate a quarterly stock market-to-GDP ratio of qt/Yt = 4.0, consistent

with historical averages.21 I assume that the wage markup equals µw = 1, such that

there are no union transfers in steady state.

The calibration of the government sector follows standard values, as well as historical

averages for the debt structure. I set government expenditure equal to 20% of GDP and

total government debt equal to 2.8 times quarterly GDP, corresponding to an annual

21 Bayer, Born and Luetticke (2024) estimate a stockmarket to wealth ratio of 1.14.
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Table 2 Calibration of the public debt structure

Bond Label Maturity Tranche n Share ω(n) in Total Debt Av. Duration 1/δ(n) in Quarters

3M ≤ 3M 0.154 1.00
6M 6M − 9M 0.129 2.31
1Y 1Y 0.043 4.00
2Y 2Y 0.138 8.00
5Y 3Y − 7Y 0.296 18.32
10Y 8Y − 12Y 0.095 37.36
20Y 15Y ≤ 0.145 95.74

Notes: Maturities show the maturity of the zero coupon bonds in months (M) or years (Y). Share in total
debt ω(n) represents the fraction of total government debt with the respective maturity. The duration δ(n)

illustrates the average duration in quarters of the neighboring maturities I clustered together to create
the seven subgroups.

debt-to-GDP ratio of 70%, both reflecting historical averages. The risk-free interest rate

is set to 0.5%, in line with the U.S. postwar average. The labor tax rate τ is set to 0.305

such as to balance the government’s budget constraint.

To calibrate the maturity structure of government debt, I use historical averages from

the database of De Graeve and Mazzolini (2023). Appendix III provides a detailed illus-

tration. Below, I give a brief overview. I take the averages over the market value of public

debt at each maturity available in the dataset. I then combine neighboring maturities

together in order to obtain seven groups that approximately represent the maturities of

three and six months, as well as one, two, five, ten, and fifteen years. I choose these

tranches to achieve almost equally weighted tranches and to feature important maturi-

ties on the yield curve. Table 2 illustrates the resulting calibration parameters.

Roughly 30% of government debt has a maturity equal to or below one year, approxi-

mately 44% has a maturity between one year and five years, and the rest have a maturity

longer than five years. I assume that all debt within the dataset are zero-coupon bonds

and then calculate the weighted maturity of the empirical groups to arrive at the du-

ration measure δm for each group. I then label each of these groups according to their

closest full month or year.

3.2 Bayesian Estimation of the Model

To estimate the model, I follow the methodology of Auclert et al. (2021), representing

the model in its vector moving average (VMA(∞)) form. For the empirical implementa-

tion, I use the same macroeconomic time series as in Bayer, Born and Luetticke (2024),

covering the period from the third quarter of 1954 to the fourth quarter of 2019. I aug-
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ment this dataset with updated series from Shiller (1989) on equity prices, dividends,

and returns. The combined dataset includes growth rates of real GDP, consumption, in-

vestment, wages, dividends, and stock prices. Hours worked, the (shadow) federal funds

rate, the inflation rate, and real equity returns are expressed in logarithmic levels.22 A

detailed description of the data sources and the transformations applied is provided in

Appendix III.

To estimate the model, I use the DIME sampler of Boehl (2024). The DIME sampler

has two important advantages. First, by combining parallel local chains with a global

sampler, it enables the approximation of even multinomal posterior distributions. Hence,

it is very robust to explore the unknown posterior distribution of the estimated HANK

model. Second, the global sampler also does not require mode optimization before

initializing sampling. The sampler learns the shape of the posterior distribution just

from sampling and therefore is robost to misspecification of priors. Table 3 illustrates

the priors used for estimation, as well as the posterior estimates.

Priors For all exogenous shock processes I impose an identical prior structure. Inno-

vation standard deviations are given Inverse Gamma priors, while the autoregressive

coefficients receive Beta priors. This combination is weakly informative, puts mass away

from the boundaries, and treats the shocks symmetrically. For the policy parameters, the

priors follow Bayer, Born and Luetticke (2024), which aligns the Taylor rule coefficients

and interest rate inertia with common benchmarks in the New Keynesian literature. For

the indexation parameters ιp and ιw I adopt the priors from Smets and Wouters (2007),

anchoring beliefs about backward indexation at empirically plausible levels. Overall, the

prior block is comparable to the main references and sufficiently diffuse to let the data

discipline the posterior. Next, I illustrate the estimation results evaluated at the average

of the posterior distribution.

Shock processes Shock dynamics display high persistence for real and fiscal distur-

bances, with ρq, ρz, ρg near 0.96–0.99 and ρp ≈ 0.87. Innovation scales are heteroge-

neous: government, wage, and investment shocks have the largest variances in our

normalization (σg · 100 ≈ 2.96, σw · 100 ≈ 2.08, σi · 100 ≈ 2.21), whereas markup-type

and asset-price shocks are comparatively small (σζ · 100 ≈ 0.18, σq · 100 ≈ 0.36). These

magnitudes are broadly consistent with medium-scale NK estimates that attribute per-

sistent yet relatively low-volatility movements to price-setting disturbances and larger

innovations to fiscal or cost-side shocks.

22 Following Bayer, Born and Luetticke (2024), I use the shadow federal funds rate constructed by Wu
and Xia (2016) during periods when the federal funds rate is constrained by the zero lower bound.
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Table 3 Bayesian estimation results: shock and policy parameters

Prior Posterior

Shock Parameter Distribution Mean SD Mean Median 5% 95%

σq · 100 Inv. Gamma 10.0 25.0 0.357 0.342 0.274 0.443
ρq Beta 0.5 0.2 0.985 0.986 0.980 0.990
σζ · 100 Inv. Gamma 10.0 25.0 0.184 0.179 0.151 0.218
ρζ Beta 0.5 0.2 0.802 0.804 0.767 0.834
σz · 100 Inv. Gamma 10.0 25.0 0.672 0.661 0.601 0.737
ρz Beta 0.5 0.2 0.972 0.972 0.956 0.983
σr · 100 Inv. Gamma 10.0 25.0 0.316 0.310 0.275 0.356
σi · 100 Inv. Gamma 10.0 25.0 2.208 2.187 1.993 2.452
ρi Beta 0.5 0.2 0.665 0.665 0.575 0.748
σp · 100 Inv. Gamma 10.0 25.0 0.301 0.297 0.268 0.330
ρp Beta 0.5 0.2 0.869 0.895 0.299 0.927
σw · 100 Inv. Gamma 10.0 25.0 2.080 2.063 1.624 2.708
ρw Beta 0.5 0.2 0.938 0.940 0.914 0.958
σg · 100 Inv. Gamma 10.0 25.0 2.956 2.958 2.711 3.222
ρg Beta 0.5 0.2 0.962 0.962 0.949 0.972

Prior Posterior

Policy Parameter Distribution Mean SD Mean Median 5% 95%

ρr Beta 0.5 0.2 0.697 0.703 0.654 0.742
ϕπ Gamma 1.5 0.3 2.190 2.191 2.007 2.399
ϕY Normal 0.1 0.1 0.230 0.231 0.161 0.299
ρτ Beta 0.5 0.2 0.373 0.387 0.159 0.580
γB
τ Normal 0.0 1.0 5.850 5.900 4.664 7.228

γY
τ Normal 0.0 1.0 0.601 0.573 −0.485 1.642

λp Beta 0.5 0.1 0.496 0.498 0.318 0.672
λw Beta 0.5 0.1 0.279 0.279 0.222 0.339
ιp Beta 0.5 0.2 0.504 0.501 0.225 0.785
ιw Beta 0.5 0.2 0.115 0.112 0.040 0.279
χ Gamma 4.0 2.0 2.552 2.689 0.826 6.490

Notes: Posterior estimates are based on Bayesian inference using the DIME sampler by Boehl (2024). The
sampler was run with 128 parallel chains for 7,500 iterations each. I discard the first 2,500 iterations as
burn-in. Reported values are posterior means, medians, as well as 90 percent credible intervals.
Reported values for shock standard deviations are scaled by 100 to enhance readability.

Policy Parameters The monetary policy block is well behaved. The posterior mean for

interest rate smoothing is ρr ≈ 0.70, consistent with the 0.6–0.8 range reported by Smets

and Wouters (2007) and Bayer, Born and Luetticke (2024). The inflation coefficient is

ϕπ ≈ 2.19, comfortably above unity and within the 1.5–2.5 interval typically found for

post-1990 U.S. data, while the output coefficient ϕY ≈ 0.23 lies in the standard 0.1–

0.3 range. The fiscal rule parameters indicate moderate persistence in the fiscal stance,

ρτ ≈ 0.37, a sizable feedback on debt, γB
τ ≈ 5.85, and a smaller feedback on activity,
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γY
τ ≈ 0.60.

Nominal frictions and indexation The posterior for price and wage stickiness, λp ≈

0.50 and λw ≈ 0.28, suggests appreciable real rigidity with relatively easier wage adjust-

ment than price adjustment in this specification. These values fall within the empirical

range reported in medium-scale NK estimations, though they point to somewhat lower

wage stickiness than in some earlier studies. Indexation is asymmetric: price indexation

is moderate, ιp ≈ 0.50, whereas wage indexation is low, ιw ≈ 0.12. Relative to Smets

and Wouters (2007), which typically finds modest price indexation and non-negligible

wage indexation, our estimates imply stronger backward-looking behavior in prices and

weaker in wages, consistent with studies emphasizing improved nominal anchoring of

wage setting in more recent samples.

Diagnostics and additional evidence To assess convergence and mixing, Appendix IV

reports trace plots, posterior densities and convergence checks for all parameters. The

traces exhibit stationary, well-overlapped chains for the vast majority of parameters, and

the corresponding posterior distributions are unimodal and well behaved. Together with

the large number of chains and draws used in estimation, these diagnostics support the

reliability of the posterior summaries reported in the table.

4 Decomposing U.S. Business Cycles and Asset Premia

The estimated model enables me to revisit the question on key drivers of the business

cycle and household inequality. Thereafter, I can use the model to decompose asset

premia into their risk components.

4.1 Decomposing Aggregates and Inequality

Figure 2 and figure 3 show the forecast error variance decomposition (FEVD) for key

aggregate variables and measures of inequality over a 32-quarter horizon. The decom-

position attributes the variance in each variable to eight structural shocks: the asset

price shock (ϵq), the discount factor shock (ϵζ), the TFP shock (ϵZ), the monetary policy

shock (ϵr), the investment-specific technology shock (ϵi), the price markup shock (ϵp),

the wage markup shock (ϵw), and the government spending shock (ϵg).

Decomposing Aggregates: Figure 2 shows the FEVD for aggregates. For output, short-

run fluctuations are mostly driven by monetary and fiscal shocks. Over time, supply-side
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Figure 2 Forecast Error Variance Decomposition of Aggregate Variables
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Notes: Forecast error variance decomposition of aggregate variables over 32 quarters. The coloured areas

indicate the share of the variance in the illustrated variable due to an individual shock. Decomposition in the

asset price shock ϵq, discount factor shock ϵζ , TFP shock ϵZ , monetary policy shock ϵr, investment specific

technology shock ϵi, price markup shock ϵp, wage markup shock ϵw, and government expenditure shock ϵg.

forces like TFP and investment-specific technology become more important. Consump-

tion follows a similar pattern. In the short run, demand shocks matter most. In the

long run, productivity-related shocks take over. Investment is strongly driven by the

investment-specific technology shock at all horizons. TFP plays a smaller role, while

discount factor and monetary shocks influence short-run movements. Wages are shaped

mainly by wage markup and TFP shocks, with smaller effects from price markup and

monetary shocks.

Hours worked respond mostly to wage markup and demand shocks in the short run.
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Figure 3 Forecast Error Variance Decomposition of Inequality Measures
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Notes: Forecast error variance decomposition of Consumption Gini and Wealth Gini over 32 quarters. The

coloured areas indicate the share of the variance in the illustrated variable due to an individual shock.

Decomposition in the asset price shock ϵq, discount factor shock ϵζ , TFP shock ϵZ , monetary policy shock ϵr,

investment specific technology shock ϵi, price markup shock ϵp, wage markup shock ϵw, and government

expenditure shock ϵg.

Over longer horizons, TFP becomes more relevant. The federal funds rate is largely

explained by monetary policy shocks, but it also reacts to inflation and real activity,

which bring in price markup and TFP shocks. Inflation is driven by price markup shocks

at short horizons. Monetary and demand shocks also play a role. In the long run,

technology shocks gradually gain importance. Equity return volatility is mainly driven

by the discount factor and asset price shocks. These capture variation in the pricing of

risk. TFP and investment-specific technology matter through their effect on cash flows,

and markup shocks influence both cash flows and the pricing kernel.

Compared to Smets and Wouters (2007) and Bayer, Born and Luetticke (2024), my

model produces notable differences in the importance of shared shocks. Like those

papers, TFP and investment shocks are key for long-run output and investment. But my

model assigns a larger share of short-run variation in consumption and hours to discount

factor and monetary policy shocks. This reflects stronger intertemporal effects due to

portfolio choice. Price and wage markup shocks remain central for inflation and wages,

as in both benchmark models. However, in my model, their effects last longer. This is

likely due to how household heterogeneity and segmented markets affect transmission.

Although I use similar shocks, their impact changes because of richer microeconomic

structure. These features are not present in the representative-agent model of Smets

and Wouters (2007) or the HANK model with limited asset structure in Bayer, Born and

Luetticke (2024).
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Decomposing Inequality: Figure 3 illustrates the FEVD for the consumption Gini and

the Wealth Gini as measures of inequality. For the consumption Gini, the forecast error

variance decomposition indicates that TFP shocks (ϵZ), investment-specific technology

shocks (ϵi), and wage markup shocks (ϵw) are the primary drivers of short- and medium-

run fluctuations. These shocks affect households asymmetrically through differences in

labor income exposure and the amplification of nominal rigidities, leading to hetero-

geneous consumption responses across the distribution. In the short run, nearly all

shocks contribute to consumption inequality, but investment-specific technology shocks

alone account for roughly one-third of the total variance. Over longer horizons, the

importance of TFP and wage markup shocks rises, as persistent changes in productiv-

ity and wage-setting behavior reshape income trajectories and alter households’ ability

to smooth consumption. This shift highlights a transition from transitory, investment-

driven dispersion to more structural, long-lasting sources of consumption inequality.

In contrast, the dynamics of the wealth Gini exhibit a distinct shift in the importance

of structural shocks over time. In the short run, wealth inequality is primarily driven

by the discount factor shock (ϵζ), along with substantial contributions from TFP shocks

(ϵZ) and investment-specific technology shocks (ϵi). These shocks influence asset ac-

cumulation through heterogeneous saving behavior and differential exposure to capital

income risk. As the forecast horizon increases, however, the role of investment-specific

technology shocks diminishes, while the importance of government expenditure shocks

(ϵg) rises, reflecting the long-term redistributive effects of fiscal policy. At the same time,

the influence of the discount factor shock gradually declines, whereas the contribution

of TFP shocks grows, consistent with their persistent impact on wealth accumulation

through productivity and long-run return dynamics. Notably, the asset price shock (ϵq)

contributes only marginally at all horizons, suggesting that while it may generate short-

term asset price volatility, it does not play a central role in shaping long-run wealth

inequality in the model.

Asset Price Shock: The asset price shock (ϵq) plays a limited role for most macroeco-

nomic aggregates but becomes more relevant for financial variables. While it contributes

only marginally to the variance of output, consumption, or inflation, it has a noticeable

impact on the volatility of equity returns. This suggests that the shock captures variation

in risk pricing that is not directly linked to fundamental forces. Its effect is concentrated

in the short run and does not drive long-term fluctuations in real variables or inequality.
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Table 4 Annualized Assets Premia in Excess of the 3-month Government Bond Return

Asset HA (%) RA (%) Data (%)

Equity 3.90 3.0× 10−4 5.01
Capital 0.66 1.2× 10−4 -

Bond 6m 0.10 1.0× 10−6 0.19
Bond 1y 0.25 2.0× 10−5 0.36
Bond 2y 0.45 5.0× 10−5 0.71
Bond 5y 0.63 8.0× 10−5 1.28
Bond 10y 0.77 9.0× 10−5 1.76
Bond 20y 1.01 1.1× 10−4 1.94

Notes: Annualized premia of the estimated heterogeneous agent (HA) model, for a representative agent
(RA) model, and estimates from the data. The premia are calculated using the methodology of Auclert
et al. (2024): R1−R0

R
≈ −X λ̄σ2, where X is the ex-post variation of the excess return of an asset over

the 3m-bonds return, and λ̄ is the pricing kernel of the representative asset buyer. The estimate for the
equity premium is calculated as the mean of the annualized excess returns of stock returns over the
return of a zero-coupon bond with a ten year maturity. The estimates for the term premia are calculated
as the excess returns of zero-coupon bonds with constant maturity over the return of a zero-coupon bond
with a maturity of three months. The data on equity returns is the identical dataseries that I use for my
estimation. The data on the zero-coupon

4.2 Decomposing the Equity Premium

Table 4 reports annualized asset return premia, expressed in percentage points above

the 3-month government bond return, for both a heterogeneous agent (HA) model and

a representative agent (RA) version of the model. The premia are computed using the

methodology of Auclert, Rognlie and Straub (2024a), which ties asset premia to the

product of the pricing kernel and the variance of excess returns.

In the HA model, I obtain a sizable equity premium of 3.9%, which reflects meaningful

compensation for holding risky equity. This premium stands in stark contrast to the

negligible value generated by the RA model, which lacks sufficient heterogeneity and

pricing kernel curvature to explain observed asset return differentials. The HA model

thus provides a more realistic account of equity risk compensation.

For capital, the HA model yields a much smaller premium of 0.66%, which is rel-

atively modest compared to equity. This may reflect the absence of nonfundamental

fluctuations in housing prices, which are shown to be important in explaining capital

returns in models such as Kaplan, Mitman, and Violante (KMV). Incorporating such

housing-related asset price dynamics could potentially amplify the premium on capital

in future extensions.

The model successfully captures a sizable share of the term premium on government

28



Table 5 Decomposition of the Annual Equity Premium in individual risk components

Risk Component Z Abs. Contribution Rel. Contribution Ωk,Z (in %)

Asset-Price 1.69 47.00

Discount-Factor -0.43 -11.01

Productivity 0.74 17.22

Monetary Policy 0.12 2.72

Investment specific Prod. 0.82 22.13

Price Markup -0.12 -1.90

Wage Markup 0.20 1.36

Government Exp. 0.90 22.49

Total 3.90

Notes: Contribution Ωϵ of aggregate shocks to total equity premium of 3.90%. The contribution is

calculated as Ωϵ =
Xϵλ̄ϵσ

2

ϵ

Xλ̄σ2
, hence how much of the total equity premium is explained through one

individual shock.

bonds. For example, the 10-year bond yields a premium of 0.77%, rising to 1.01%

for the 20-year bond. This upward-sloping pattern reflects the idea that longer-duration

assets are riskier and thus command higher compensation. While the model accounts for

roughly half of the empirically observed term premia, this already marks a substantial

improvement over representative-agent benchmarks. Further amplification via stronger

long-horizon risk pricing or deeper bond market segmentation could be help to fully

match observed bond return data.

Table 5 presents a decomposition of the model-implied annual equity premium into

contributions from eight structural shocks. The asset-price shock, which captures non-

fundamental fluctuations, is the most important source of risk compensation. It accounts

for 1.69 percentage points, or 47%, of the total equity premium. Including this shock not

only helps the model match the volatility of equity prices and returns but also generates

a sizeable premium. This result implies that a meaningful share of the equity premium

can be attributed to nonfundamental fluctuations, which households perceive as unde-

sirable and therefore require compensation for. Incorporating this shock substantially

improves the model’s ability to replicate empirically observed equity premia.

The remaining 53% of the premium is explained by classical business cycle shocks.

Among these, technology and investment-specific technology shocks jointly account for

1.56 percentage points, or 39%, of the total. This underscores the importance of long-

run productivity and investment dynamics in shaping asset prices, consistent with stan-

dard macro-finance insights. The government expenditure shock contributes 0.90 per-
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centage points, or 22.49%, to the premium. Its strong effect reflects a key feature of

the HANK framework: fiscal shocks trigger endogenous tax adjustments that crowd out

private consumption. This magnifies household-level consumption volatility and makes

fiscal risk particularly salient and highly priced by households. In contrast, the remaining

shocks—discount factor, price markup, wage markup, and monetary policy—contribute

only modestly. The discount factor shock has a negative contribution of -11.01%, indi-

cating that equities serve as a hedge against discount rate fluctuations in this model.

Taken together, these results show that nonfundamental fluctuations, alongside technology-

driven risks, are central to understanding the equity premium in a setting with house-

hold heterogeneity and incomplete markets.

5 Conclusion

This paper develops and estimates a quantitative heterogeneous-agent New Keynesian

model with portfolio choice and nonfundamental asset price shocks. By introducing

noise traders in a segmented equity market, the model captures fluctuations in asset

prices that are disconnected from economic fundamentals. While these nonfundamental

shocks generate substantial volatility in equity prices, their aggregate macroeconomic

effects are limited. This is due to the relatively small share of equity in total household

wealth, low marginal propensities to consume out of wealth, and the comparatively low

variance of the shock itself. As a result, nonfundamental fluctuations play only a minor

role in explaining movements in aggregate consumption, investment, and inequality.

Despite their limited impact on macroeconomic aggregates, nonfundamental shocks

are crucial for understanding asset pricing. They account for nearly 70 percent of the

variance in equity returns and explain 40 percent of the model-implied equity premium.

This result arises because equity holders, who are disproportionately wealthy, face sub-

stantial consumption volatility due to large return fluctuations, even though they are

otherwise well-insured. The model thus bridges a gap in the literature by showing that

nonfundamental asset price risk can generate sizable premia in a setting with realistic

heterogeneity and limited aggregate effects. These findings suggest that the pricing of

risk in financial markets is shaped not only by fundamentals but also by how nonfunda-

mental shocks interact with portfolio heterogeneity and risk-sharing frictions.
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Appendix

I Appendix: Derivations for Equity Price

This section illustrates the derivation of the equilibrium equity price in the main text,

and illustrates an alternative derivation based on an incomplete information setting.
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I.1 Derivation of Equilibrium Equity Price

For each equity j, market clearing requires that aggregate demand equals the (normal-

ized) unit supply:
∫ 1

0

θljt dl = 1. (30)

From the fundamental trader problem, the optimal demand for equity j is

θFljt = − qjt + Et

[
djt+1 + qjt+1

1 + rt+1

]

for all l ∈ [0, ν], (31)

while noise traders follow the rule

θNljt = ξ̃t + ϵθljt for all l ∈ (ν, 1], (32)

where ϵθljt is iid with zero mean across l (and j). Integrating (31) over the mass ν of

fundamental traders and (32) over the mass 1− ν of noise traders yields

∫ ν

0

θFljt dl = ν

(

− qjt + Et

[
djt+1 + qjt+1

1 + rt+1

])

, (33)

∫ 1

ν

θNljt dl = (1− ν)ξ̃t +

∫ 1

ν

ϵθljt dl

︸ ︷︷ ︸
=0

. (34)

The trader-stock specific shock ϵθljt washes out when averaged over traders due to its iid

structure. Substituting (33) and (34) into (30) gives

ν

(

− qjt + Et

[
djt+1 + qjt+1

1 + rt+1

])

+ (1− ν)ξ̃t = 1. (35)

Solving (35) for qjt yields

qjt = Et

[
djt+1 + qjt+1

1 + rt+1

]

+
(1− ν)ξ̃t − 1

ν
. (36)

Define the effective nonfundamental asset-price term as

ξt ≡
(1− ν)ξ̃t − 1

ν
, (37)

then (36) becomes

qjt = Et

[
djt+1 + qjt+1

1 + rt+1

]

+ ξt, (38)
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which matches equation (2) in the main text. By assumption, ξt follows the AR(1)

process ξt = ρqξt−1 + ϵqt with ϵqt ∼ N (0, σ2
q ). In a symmetric equilibrium with identical

firms, qjt = qt and djt = dt for all j. Aggregating (38) across j yields the index-fund

pricing equation

qt = Et

[
dt+1 + qt+1

1 + rt+1

]

+ ξt, (39)

which coincides with equation (3).

I.2 Alternative Microfoundation of Asset Price Shock

This subsection provides an alternative microfoundation of asset price shocks based on

incomplete information as in Futia (1981), Singleton (1986), Bacchetta and Wincoop

(2006), Angeletos and Lian (2016), and Rondina and Walker (2021). This subsection

provides an alternative microfoundation for nonfundamental asset price fluctuations

based on incomplete information. Each trader m ∈ [0, 1] observes a noisy signal about

the future payoff of each equity j ∈ [0, 1], given by:

xmjt = djt+1 + umjt, where umjt ∼ N (ξ̃t, σ
2
u).

The noise term umjt contains a cross-sectionally common distortion ξ̃t, which biases the

beliefs of all traders in the same direction.

Traders with Imperfect Information. Each trader lives for two periods,23 is risk-

neutral, discounts the future at the risk-free rate 1 + rt+1, and incurs quadratic disu-

tility from monitoring firm-specific signals. Each trader chooses a portfolio allocation

{θmjt}j∈[0,1] to maximize:

Umt = max
{θmjt}

∫ 1

0

[

−qjtθmjt + Emt

(
djt+1 + qjt+1

1 + rt+1

)

θmjt −
1

2
θ2mjt

]

dj,

where Emt[·] denotes trader m’s subjective expectation, based on the signal xmjt. The

optimal portfolio demand satisfies:

θmjt = Emt

[
djt+1 + qjt+1

1 + rt+1

]

− qjt.

23 By assuming that traders only live for two periods, higher-order believes beliefs of traders about next
periods price become irrelevant. This assumption makes the solution more tractable, but as Bacchetta
and Wincoop (2006) show in their paper, does not change the implications.
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Equilibrium Asset Prices. Market clearing requires that the average demand equals

the unit supply of each equity, that is:

∫ 1

0

θmjtdm = 1.

Substituting the demand expression yields the asset pricing equation:

qjt = Ēt

[
djt+1 + qjt+1

1 + rt+1

]

− 1,

where Ēt[·] denotes the cross-sectional average of individual expectations.

Belief Distortions and Nonfundamental Prices. Bayesian updating under normally

distributed noise implies that all traders share a distorted belief about the average pay-

off:

Ēt

[
djt+1 + qjt+1

1 + rt+1

]

= E
true
t

[
djt+1 + qjt+1

1 + rt+1

]

+
ξ̃t

1 + rt+1

.

Substituting this into the pricing equation yields:

qjt = E
true
t

[
djt+1 + qjt+1

1 + rt+1

]

+ ξt,

where the effective asset price shock is defined as:

ξt ≡
ξ̃t

1 + rt+1

− 1.

As in the main text, we assume ξt follows a stationary AR(1) process:

ξt = ρqξt−1 + ϵqt , ϵqt ∼ N (0, σ2
q ).

Symmetric Equilibrium and Index Fund Pricing. Assuming that all equities are sym-

metric and deliver identical payoffs, the price of the equity index fund satisfies:

qt = E
true
t

[
dt+1 + qt+1

1 + rt+1

]

+ ξt,

which corresponds exactly to equation (3) in the main text. Hence, distorted beliefs

due to incomplete information can rationalize the same reduced-form expression for

nonfundamental price movements as in the model with noise traders.
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Implications for Returns. As before, asset price fluctuations translate into excess re-

turns through:

ret =
qt − qt−1 + dt

qt−1

,

such that nonfundamental shocks affect both prices and returns, even in the absence of

changes to dividends or discount factors.

II Appendix: Derivations of the endogenous portfolios

This section derives the results of Auclert et al. (2024) in a unified manner.

Setting and perturbation

There exists a continuum of heterogeneous agents with index i who can allocate their

wealth ai to up to K + 1 assets. An asset k has supply Ak and stochastic payoff xk(ϵ),

where ϵ ≡ (ϵ1, ..., ϵZ) denotes the vector of Z exogenous shocks. We suppose that ϵZ =

σϵZ , with ϵZ ∼ N(0, σ2
Z), such that σ is the common volatility that exists in the economy.

Denoting the value function of household i by Wi and given the price of asset k as pk,

the problem of household i is

max
aki

Eϵ

[

Wi

(
K∑

k=0

xk(ϵ)aki , ϵ

)]

(40)

s.t.

K∑

k=0

pkaki = ai (41)

and

K∑

k=0

θkl p
kaki ≥ 0 (42)

with Wi(a
′, ϵ) = Es′,s [V (a′, s′, ϵ)] where s′ denotes the idiosyncratic risk (without aging

transition) and θkl denotes the coefficient for asset k in the constraint l. Denoting the

Lagrange multiplier on i’s budget constraint by γi and the Lagrange multiplier on the l

non-negativity constraints with ηil, the problem has the first-order conditions

Eϵ

[
xk(ϵ)

pk
W ′

i (ϵ)

γi

]

= 1 +
L∑

l=0

ηil
γi

K∑

k=0

θkl (43)
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which must hold for every i and for every k. Writing di for distribution of agents i,

market clearing in all asset markets imposes:

∫

aki di = Ak ∀k. (44)

Given primitives ai and Wi, as well as the parameter σ, an equilibrium is a set of prices

for each asset pk and Lagrange multipliers for each agent γi and ηil, such that the opti-

mality conditions (43) are satisfied for each (i, k) pair, and all asset markets clear, i.e.

(44) holds for all k.

We now work out the implications of these equations for a perturbation in σ up to

the second order. We write pk(σ), γi(σ), and ηil(σ) for the solution at a given σ and

study their second-order Taylor expansion around σ = 0. We note that, given that

the distribution of ϵ is symmetric, these must be even functions of σ: pk(−σ) = pk(σ),

γi(−σ) = γi(σ) and ηil(−σ) = ηil(σ). This implies, in particular, that dγi
dσ

= dpk

dσ
= dηil

dσ
=

024, a result that we will use several times below.

Zero-th and first-order perturbation: Applying (43) at σ = 0, we find γi/W
′
i = xk/pk

for all i and k, where pk is short-hand for pk(0), γi for γi(0), x
k for xk(0), and W ′

i for

W ′
i (
∑K

k=0 x
kaki , 0). Hence, the returns on all assets must equal a common constant R,

and this is also the rate entering the Euler equation of all agents:

γi/W
′
i = xk/pk = R (45)

In particular,
∑K

k=0 x
kaki is also just R

∑K
k=0 p

kaki = Rai. Equation (45) gives the usual

result that, with no aggregate uncertainty, all assets must have equal returns.

Next, differentiating (43) with respect to σ (and around σ = 0) gives us

E

[
dxk

dσ
W ′

i + xk dW
′
i

dσ

]

=
dγi
dσ

pk +

(

γi +
L∑

l=0

ηilθ
k
l

)

dpk

dσ
+

L∑

l=0

dηil
dσ

θkl p
k (46)

Given the definition xk(ϵ) = xk(σϵ1, ..., σϵZ), and Wi(
∑K

k=0 x
k(σϵ)aki , σϵ), we have that

dxk

dσ
=

Z∑

z=1

∂xk

∂ϵz
ϵZ and

dW ′
i

dσ
=

Z∑

z=1

dW ′
i

dϵz
ϵz (47)

24 Up to first order, the portfolios are not determined such that the portfolio constraints do not bind. The
only constraint that might bind is the constraint on total wealth.
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where we have defined the total deriviate of W ′
i with respect to ϵz as

dW ′
i

dϵz
≡ W ′′

i

K∑

k=0

∂xk

∂ϵz
aki +

∂W ′
i

∂ϵz

Since E[ϵz] = 0, using equation (47) to substitute into (46), we see that the left-hand

side is zero. The right-hand side of (46) is also zero, given our symmetry result above,

so equation (46) holds regardless of portfolios.

Second-order perturbation: Now, differentiating (46) with respect to σ gives us:

E

[
d2xk

dσ2

]

W ′
i + 2E

[
dxk

dσ

dW ′
i

dσ

]

+ xk
E

[
d2W ′

i

dσ2

]

=

d2γi
dσ2

pk + 2

(

dγi
dσ

+
L∑

l=0

dηil
dσ

θkl

)

dpk

dσ
+ γi

d2pk

dσ2
+

L∑

l=0

d2ηil
dσ2

θkl p
k (48)

Using our symmetry results from above, and dividing all entries by xkW ′
i = γip

k from

(45), we can write this simply as:

E

[
dxk/xk

dσ

dW ′
i/W

′
i

dσ

]

= αi + βk + δki , (49)

where αi, which only depends on household i, βk, which only depends on asset k, and

δki , which depends on both are defined as

αi ≡
1

2

(
d2γi/γi
dσ2

− E

[
d2W ′

i/W
′
i

dσ2

])

βk ≡
1

2

(
d2pk/pk

dσ2
− E

[
d2xk/xk

dσ2

])

δki ≡
L∑

l=0

θkl
d2ηil/γi
dσ2

Using (47), and the fact that E[ϵϵ′] = Σ, we can rewrite (49) as

Z∑

z=1

∂xk/xk

∂ϵz

dW ′
i/W

′
i

dϵz
σ2
z = αi + βk + δki ∀ i, k (50)

We note that this applies to the product of two first derivatives, and therefore, intu-

itively, places restrictions on the relationship between the impulse response of returns

and marginal utilities. Finally, using (50) for asset k relative to asset 0 (where we note
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that 0 could correspond to any reference asset in the economy), we obtain:

Z∑

z=1

(
∂xk/xk

∂ϵz
−

∂x0/x0

∂ϵz

)
dW ′

i/W
′
i

dϵz
σ2
z = βk − β0

︸ ︷︷ ︸

bk

+ δki − δ0i
︸ ︷︷ ︸

dki

∀ i, k (51)

Equation (51) says that all households with an internal portfolio solution (implying

δki = 0) equalize their average sensitivity to shocks z, interacted with the relative returns

on asset k, to a k-specific term bk. We will soon see that this term has the interpretation of

a relative risk premium on asset k. Stacking b ≡ (b1, ..., bK)′ as a K × 1 vector of relative

risk premia, λi ≡ (
dW ′

i/W
′

i

dϵ1
, ...,

dW ′

i/W
′

i

dϵZ
)′ as a Z× 1 vector of sensitivities of marginal utility

to each shock, defining the Z×K matrix X with elements equal to the relative returns of

each asset to each shock Xzk ≡
∂xk/xk

∂ϵZ
− ∂x0/x0

∂ϵZ
, letting Σ denote the Z×Z matrix with σ2

z

on its diagonal, and defining the matrix Θ by Θlk = θkl − θ0l and the vector ηil =
d2χil/γi

dσ2

such that Θ′ηi ≡ (d1i , ..., d
K
i )

′ is a K × 1 vector, equation (51) becomes:

X
′
Σλi = b+Θ

′ηi ∀ i (52)

The term Θ
′ηi reflects the shadow value of the constraints.

Complete markets

Suppose that K = Z, such that the number of assets equals the number of shocks plus

one. This effectively allows households to insure against all aggregate shocks by taking

respective portfolio positions. We say that this corresponds to complete markets with

respect to aggregate risk. Then X is a square matrix. Additionally, suppose the following

assumptions are fulfilled:

Assumption 1 (Spanning). The rows of X are linearly independent.

and

Assumption 2 (Constraints). There are no portfolio constraints, such that ηit = δki = 0

and Θ
′ηi = 0K .

Assumption 1 says that the relative returns across assets vary sufficiently across shocks,

while assumption 2 abstracts from portfolio constraints. Under the first assumption, the

Z×Z matrix X
′
Σ is invertible, while the second assumption abstracts from idiosyncratic

binding constraints. Condition (52) can therefore be rewritten:

λi = (X′)−1
Σ

−1
b ≡ λ, (53)
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which yields the first main result.

Proposition 1. Suppose that K = Z and assumptions 1 and 2 hold. Then for each shock

z, there exists a λz such that
dW ′

i/W
′
i

dϵz
= λz ∀ i. (54)

Proposition 1 provides us with a simple test of portfolio optimality in a setting where

K = Z. To understand the test, note that standard first-order methods allow us rela-

tively easily to solve for steady-state xk, Wi, as well as xk

∂ϵz
and

dW ′

i

dϵz
for given shocks z,

conditional on given incoming portfolios {aki } for all agents. With these objects, one can

form the matrix of relative returns X to test if the spanning assumption 1 is satisfied, and

then test whether
dW ′

i/W
′

i

dϵz
are equalized across agents i for all shocks z. If so, proposition

1 tells us that the portfolios are optimal.

Proposition 1 also implies a method for solving for optimal portfolios directly. Sup-

pose that aki is an exogenous portfolio and let ti be the excess payoff from another

portfolio aki such that

ti ≡
K∑

k=0

xk(ϵ)(aki − aki ). (55)

Moreover, let W i

(
∑K

k=0 x
k(ϵ)aki , ϵ

)

denote the value function under the exogenous port-

folio, whereas Wi(ti, ϵ) ≡ W i

(
∑K

k=0 x
k(ϵ)aki + ti, ϵ

)

denotes the value function under

the portfolio aki . With complete markets and assumptions 1 and 2 in place, households

portfolios should satisfy the risk-sharing condition (54). We can find the corresponding

excess payoff ti, by imposing that it satisfies the risk-sharing condition. Given the exoge-

nous portfolio aki , we can approximate the risk-sharing condition at the optimal portfolio

around the utility change in the exogenous portfolio case as

dW
′

i/W
′

i

dϵz
+

W
′′

i

W
′

i

dti
dϵz

= λz. (56)

The first term on the right-hand side of (56) refers to the direct exposure to shocks

under exogenous portfolios, whereas the second term denotes the ”transfer” exposure

to shocks under a portfolio that achieves optimal aggregate risk-sharing. Intuitively,

equation (56) provides a condition to solve for transfers contingent on shocks dti/dϵz:

dti
dϵz

=
W

′

i

W
′′

i

(

λz −
dW

′

i/W
′

i

dϵz

)

(57)
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and since transfers have to sum to zero,
∫

dti
dϵz

di = 0, we obtain:

λz =

(
∫

W ′
i

W ′′
i

di

)−1 ∫
W ′

i

W ′′
i

dW ′
i/W

′
i

dϵz
di. (58)

We can use these two equations to derive λz via equation (58) and then obtain excess

returns via equation (57). From the definition of the excess returns (55), we then ob-

tain the relation between transfers and the endogenous portfolios that ensures optimal

insurance against aggregate risk:

dti
dϵz

=
K∑

k=0

dxk

dϵz
(ϵ)(aki − aki ) (59)

Using the definition of portfolio shares ωk
i =

aki
ai

and ωk
i =

aki
ai

we can rewrite equation

(59) to

∂ti
∂ϵz

=
K∑

k=0

∂xk

∂ϵz
(ϵ)(aki − aki )

= ai

K∑

k=0

∂xk

∂ϵz
(ϵ)(ωk

i − ωk
i )

= ai

K∑

k=1

(
∂xk

∂ϵz
(ϵ)−

∂x0

∂ϵz
(ϵ)

)

(ωk
i − ωk

i ).

Using the definition of X from above, and defining vectors ωi = (ω1
i , ..., ω

K
i )′, ωi =

(ω1
i , ..., ω

K
i )

′, and ti = ( ∂ti
∂ϵ1

, ..., ∂ti
∂ϵZ

)′, we can write the optimal portfolio weights as

ti = X(ωi − ωi)ai ⇔ ωi = ωi +X
−1 ti

ai
(60)

For K = 1 (two assets) the relation becomes

ω1
i = ω1

i +
1

ai

(
∂x1

∂ϵz
(ϵ)−

∂x0

∂ϵz
(ϵ)

)−1
dti
dϵz

.

Finally, we can calculate the risk premia associated with the individual assets. We

want to approximate risk-premia up to second order around σ = 0. First, let Rk(σ) =

E
[
xk(σ)

]
/pk(σ) define the expected return on asset k. From equation (45), we have
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Rk(0) = R. The derivative of the expected return with respect to σ is

dRk(σ)

dσ
= E

[
dxk(σ)

dσ

]
1

pk(σ)
− E

[
xk(σ)

pk(σ)

]
dpk(σ)/pk(σ)

dσ
= 0, (61)

which uses equation (47), E
[
dxk

dσ

]

= 0 and dpk

dσ
= 0 from our symmetry result. Finally,

the second-order derivative of the expected return of asset k with respect to σ is

d2Rk(σ)

dσ2
=E

[
d2xk(σ)

dσ2

]
1

pk(σ)
− 2E

[
dxk(σ)

dσ

]
dpk(σ)/pk(σ)

dσ

1

pk(σ)

− E
[
xk(σ)

]

[
d2pk(σ)
dσ2 pk(σ)2 − 2dpk(σ)

dσ
pk(σ)

(pk(σ))4

]

=E

[
d2xk(σ)

dσ2

]
1

pk(σ)
− E

[
xk(σ)

pk(σ)

] [
d2pk(σ)/pk(σ)

dσ2

]

, (62)

where we have used again that the derivatives of the first order of payoffs xk(σ) and

prices pk(σ) are zero. Note that d2Rk(σ)
dσ2 = −2Rk(σ)βk. A second-order Taylor expansion

of the expected return Rk(σ) around σ = 0 yields

Rk(σ) ≈ Rk(0) +
dRk(0)

dσ
σ +

1

2

d2Rk(0)

dσ2
σ2 = R−Rβkσ2,

such that the relative risk premium of asset k against asset 0 has the second order ex-

pansion
Rk(σ)−R0(σ)

R
≈ −(βk − β0)σ2 = −bkσ2. (63)

We can use equation (51) and from proposition 1 equation (54) to obtain:

bk =
Z∑

z=1

(
∂xk/xk

∂ϵz
−

∂x0/xk

∂ϵz

)

︸ ︷︷ ︸

Xzk

dW ′
i/W

′
i

dϵz
︸ ︷︷ ︸

λz

σ2
z =

Z∑

z=1

Xzkλzσ
2
z (64)

such that

Proposition 2. Suppose markets are complete and assumptions (1) and (2) hold. Then,

the risk premia of asset k relative to asset 0 satisfies, to second order

Rk(σ)−R0(σ)

R
≈ −

Z∑

z=1

Xzkλzσ
2
zσ

2. (65)

Proposition 2 allows us to approximate the risk premia on an assets k using only the
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information from a first-order perturbation.

III Appendix: Data sources and transformations

This section describes the data used for the calibration and in the Bayesian estimation

of the model in the main text.

III.1 Estimation on Time-Series Data

The observables used for the estimation can be summarized as

obst =
























∆ log(Yt)

∆ log(Ct)

∆ log(It)

∆ log(wt)

∆ log(qt)

∆ log(dt)

log(Nt)

log(1 + reqt )

log( 1
q3mt

)

log(1 + πp
t )
























−
























∆ log(Yt)

∆ log(Ct)

∆ log(It)

∆ log(wt)

∆ log(qt)

∆ log(dt)

log(Nt)

log(1 + reqt )

log( 1
q3mt

)

log(1 + πp
t )
























. (66)

The ∆ denotes the first difference between variables, and bars over variables denote

the time-series averages. Except for the stock price and dividend series, all series are

obtained from the St. Louise FED - FRED database. All data series from FRED are

available at a quarterly frequency. The time series of stock prices, and dividends are

obtained from the online database of Robert Shiller. The data was first generated for

Shiller (1989), but was updated until today. The up-to-date time series can be accessed

here. I extract monthly data on nominal stock prices Qeq
t and dividends Dt from the

online dataset and convert them to real series. I illustrate the transformation from

monthly to quarterly frequency below and from nominal to real below.

Output Yt: Sum of gross private domestic investment (GPDI), personal consumption

expenditures for nondurable goods (PCND), durable goods (PCDG), and services (PCESV),

and government consumption expenditures and gross investment (GCE) divided by the

GDP deflator (GDPDEF) and the civilian noninstitutional population (CNP16OV).
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Consumption Ct: Sum of personal consumption expenditures for nondurable goods

(PCND), durable goods (PCDG), and services (PCESV) divided by the GDP deflator

(GDPDEF) and the civilian noninstitutional population (CNP16OV).

Investment It: Gross private domestic investment (GPDI) divided by the GDP deflator

(GDPDEF) and the civilian noninstitutional population (CNP16OV).

Real wage wt: Hourly compensation in the nonfarm business sector (COMPNFB) di-

vided by the GDP deflator (GDPDEF).

Hours worked Nt: Nonfarm business hours worked (HOANBS) divided by the civilian

noninstitutional population (CNP16OV).

Inflation πt: Computed as the log-difference of the GDP deflator (GDPDEF).

Nominal interest rate 1
q3mt

: Quarterly average of the effective federal funds rate (FED-

FUNDS). From 2009-Q1 to 2015-Q4, I use the shadow federal funds rate of Wu and Xia

(2016) instead of the federal funds rate, which was at the zero-lower bound.

Real stock prices qt: The nominal stock price Qeq
t (S&P Comp. P) is available at a

monthly frequency in Robert Shiller’s database. I convert the series to a quarterly fre-

quency by taking the average over the realizations of the monthly stock price. Thereafter,

the quarterly series is divided by the GDP deflator (GDPDEF) to obtain real stock prices.

Real dividends dt: The nominal dividend Dt (Dividend) is available at a monthly fre-

quency in Robert Shiller’s database. I convert the series to a quarterly frequency by

taking the average over the realizations of the monthly stock price. Thereafter, the quar-

terly series is divided by the GDP deflator (GDPDEF) to obtain the real dividend.

Real dividends dt: The nominal dividend (Dividend) is available at a monthly fre-

quency in Robert Shiller’s database. I convert the series to a quarterly frequency by

taking the average over the realizations of the monthly dividend. Thereafter, the quar-

terly series is divided by the GDP deflator (GDPDEF) to obtain the real dividend.

Real return reqt : I use the quarterly nominal equity price Qeq
t and the quarterly nominal

dividend Dt to calculate the nominal equity return as req,nomt = (Qeq
t − Qeq

t−1)/Q
eq
t−1 +

Dt/D
eq
t−1 based on the calculation of Jordà et al. (2019). I then convert the return from
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nominal to real by dividing it by the inflation rate obtained above: 1 + reqt ≡ qt+dt
qt−1

=
1+req,nom

t

1+πp
t

.

III.2 Calculation of Time-Series AVerages

IV Appendix: Estimation Diagnostics

Figures 4 and 5 illustrate the trace plots of the 128 chains over 5000 draws after a 2500

draw burn-in. Visual inspection of the trace plots indicates satisfactory mixing. For

most parameters the chains resemble a classic hairy caterpillar pattern with stationary

fluctuations around a stable level and no visible drift or regime shifts, and different

chains overlap closely which suggests convergence. Shock standard deviations appear

especially well behaved with tight stationary bands. Autoregressive coefficients mix

somewhat more slowly as expected when persistence is high; for the autocorrelation of

the price markup shock ρp, the mass concentrates close to one which introduces higher

autocorrelation, yet the chains continue to explore the relevant region of the posterior

rather than remaining stuck. In sum the traces support reliable posterior inference with

only modest caution warranted for the most persistent coefficient.

The traces for the policy parameters and frictions indicate generally satisfactory mix-

ing after the burn in period. The chains for ρr, ϕπ, and ϕy fluctuate around stable centers

with frequent crossovers and no visible drift, which points to convergence. The frictions

λp, λw, and ιp also show tight stationary bands and good overlap. The fiscal block is

somewhat more variable: ρτ explores a wider interval and moves more slowly, and γy
τ

displays heavier tails, though both still travel across the high posterior region. The level

parameter χ mixes the most slowly and spans the widest range, implying higher auto-

correlation and a lower effective sample size relative to the others. Overall the figure

supports reliable inference for most parameters, with mild caution warranted for χ and

to a lesser extent for ρτ and γy
τ .
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Figure 4 Traceplots for shock parameters after 2500 burn-in draws

Notes: Traceplots of the 128 chains used in estimation. The traceplots only illustrates the last 5000 draws
from all 128 chains. I discarded the first 2500 draws per chain as burn-in.
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Figure 5 Traceplots for policy parameters and frictions after 2500 burn-in draws

Notes: Traceplots of the 128 chains used in estimation. The traceplots only illustrates the last 5000 draws
from all 128 chains. I discarded the first 2500 draws per chain as burn-in.
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Figure 6 Posterior histogram of shock parameters

Notes: Posterior histogram from Bayesian estimation. The histogram only illustrates the last 5000 draws
from all 128 chains. I discarded the first 2500 draws per chain as burn-in.
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Figure 7 Posterior histogram of policy parameters and frictions

Notes: Posterior histogram from Bayesian estimation. The histogram only illustrates the last 5000 draws
from all 128 chains. I discarded the first 2500 draws per chain as burn-in.
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V Appendix: Structural Analysis

This section illustrates the results of a structual analysis following the estimation.

Figures (8) and (9) illustrate the impulse response functions of the estimated heteroge-

neous agent (Het) and representative agent (Rep) model version to a monetary policy

and to a asset price shock. Moreover, figure 11 provides a historical decomposition of

the individual variables on which I estimate the model.
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Figure 8 IRFs of Heterogeneous and Representative Agent Model to Monetary Policy

Notes: Impulse response functions (IRFs) of aggregates to monetary policy shock in the heterogeneous
agent (Het) model and the representative agent (Rep) model version. The impulse responses shock
absolute deviations from the steady state variable in response to the shock.
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Figure 9 IRFs of Heterogeneous and Representative Agent Model to Asset Price Shock

Notes: Impulse response functions (IRFs) of aggregates to monetary policy shock in the heterogeneous
agent (Het) model and the representative agent (Rep) model version. The impulse responses shock
absolute deviations from the steady state variable in response to the shock.
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Figure 10 IRFs of Heterogeneous and Representative Agent Model to Government

Expenditure Shock

Notes: Impulse response functions (IRFs) of aggregates to a government expenditure shock in the
heterogeneous agent (Het) model and the representative agent (Rep) model version. The impulse
responses shock absolute deviations from the steady state variable in response to the shock.
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Figure 11 Historical Decomposition of Observed Variables
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Notes: Historical decomposition of time-series data into the contribution of individual structual shocks.
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